Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem4 Structured version   Visualization version   GIF version

Theorem irrapxlem4 40302
Description: Lemma for irrapx1 40305. Eliminate ranges, use positivity of the input to force positivity of the output by increasing 𝐵 as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 13124 . . . 4 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ∈ ℕ)
21ad3antlr 731 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℕ)
3 nn0z 12183 . . . . 5 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
43ad2antlr 727 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℤ)
5 simpl 486 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐴 ∈ ℝ+)
65ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ+)
76rpred 12611 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ)
82nnred 11828 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℝ)
97, 8remulcld 10846 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℝ)
10 nn0re 12082 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
1110ad2antlr 727 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℝ)
129, 11resubcld 11243 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℝ)
1312recnd 10844 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℂ)
1413abscld 14983 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) ∈ ℝ)
155rpreccld 12621 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (1 / 𝐴) ∈ ℝ+)
1615rprege0d 12618 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)))
17 flge0nn0 13378 . . . . . . . . . . . 12 (((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)) → (⌊‘(1 / 𝐴)) ∈ ℕ0)
18 nn0p1nn 12112 . . . . . . . . . . . 12 ((⌊‘(1 / 𝐴)) ∈ ℕ0 → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
1916, 17, 183syl 18 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
2019ad3antrrr 730 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
21 simpr 488 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
2221ad3antrrr 730 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℕ)
2320, 22ifcld 4475 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
2423nnrecred 11864 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ∈ ℝ)
25 0red 10819 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 ∈ ℝ)
269, 25resubcld 11243 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) ∈ ℝ)
27 simpr 488 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
2820nnrecred 11864 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ)
2922nnred 11828 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℝ)
306rprecred 12622 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ∈ ℝ)
3130flcld 13356 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℤ)
3231zred 12265 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℝ)
33 peano2re 10988 . . . . . . . . . . . . 13 ((⌊‘(1 / 𝐴)) ∈ ℝ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
35 max2 12760 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3629, 34, 35syl2anc 587 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3720nngt0d 11862 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < ((⌊‘(1 / 𝐴)) + 1))
3823nnred 11828 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ)
3923nngt0d 11862 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
40 lerec 11698 . . . . . . . . . . . 12 (((((⌊‘(1 / 𝐴)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝐴)) + 1)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4134, 37, 38, 39, 40syl22anc 839 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4236, 41mpbid 235 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1)))
43 fllep1 13359 . . . . . . . . . . . . 13 ((1 / 𝐴) ∈ ℝ → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4430, 43syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4520nncnd 11829 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℂ)
4620nnne0d 11863 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≠ 0)
4745, 46recrecd 11588 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))) = ((⌊‘(1 / 𝐴)) + 1))
4844, 47breqtrrd 5071 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))))
4934, 37recgt0d 11749 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < (1 / ((⌊‘(1 / 𝐴)) + 1)))
506rpgt0d 12614 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐴)
51 lerec 11698 . . . . . . . . . . . 12 ((((1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ ∧ 0 < (1 / ((⌊‘(1 / 𝐴)) + 1))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5228, 49, 7, 50, 51syl22anc 839 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5348, 52mpbird 260 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴)
5424, 28, 7, 42, 53letrd 10972 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ 𝐴)
557recnd 10844 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℂ)
5655mulid1d 10833 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) = 𝐴)
572nnge1d 11861 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ≤ 𝑎)
58 1red 10817 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ∈ ℝ)
5958, 8, 6lemul2d 12655 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 ≤ 𝑎 ↔ (𝐴 · 1) ≤ (𝐴 · 𝑎)))
6057, 59mpbid 235 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) ≤ (𝐴 · 𝑎))
6156, 60eqbrtrrd 5067 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ (𝐴 · 𝑎))
629recnd 10844 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℂ)
6362subid1d 11161 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) = (𝐴 · 𝑎))
6461, 63breqtrrd 5071 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ ((𝐴 · 𝑎) − 0))
6524, 7, 26, 54, 64letrd 10972 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ ((𝐴 · 𝑎) − 0))
6614, 24, 26, 27, 65ltletrd 10975 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0))
6712, 26absltd 14976 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0) ↔ (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))))
6866, 67mpbid 235 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
6968simprd 499 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))
7025, 11, 9ltsub2d 11425 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (0 < 𝑏 ↔ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
7169, 70mpbird 260 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝑏)
72 elnnz 12169 . . . 4 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 < 𝑏))
734, 71, 72sylanbrc 586 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℕ)
7422, 2ifcld 4475 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℕ)
7574nnrecred 11864 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝑎𝐵, 𝐵, 𝑎)) ∈ ℝ)
76 elfzle2 13099 . . . . . . 7 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7776ad3antlr 731 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
78 max1 12758 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7929, 34, 78syl2anc 587 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
80 maxle 12764 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
818, 29, 38, 80syl3anc 1373 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
8277, 79, 81mpbir2and 713 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
8329, 8ifcld 4475 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ)
8422nngt0d 11862 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐵)
85 max2 12760 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
868, 29, 85syl2anc 587 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
8725, 29, 83, 84, 86ltletrd 10975 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝑎𝐵, 𝐵, 𝑎))
88 lerec 11698 . . . . . 6 (((if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ ∧ 0 < if(𝑎𝐵, 𝐵, 𝑎)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
8983, 87, 38, 39, 88syl22anc 839 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
9082, 89mpbid 235 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9114, 24, 75, 27, 90ltletrd 10975 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)))
92 oveq2 7210 . . . . . 6 (𝑥 = 𝑎 → (𝐴 · 𝑥) = (𝐴 · 𝑎))
9392fvoveq1d 7224 . . . . 5 (𝑥 = 𝑎 → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑦)))
94 breq1 5046 . . . . . . 7 (𝑥 = 𝑎 → (𝑥𝐵𝑎𝐵))
95 id 22 . . . . . . 7 (𝑥 = 𝑎𝑥 = 𝑎)
9694, 95ifbieq2d 4455 . . . . . 6 (𝑥 = 𝑎 → if(𝑥𝐵, 𝐵, 𝑥) = if(𝑎𝐵, 𝐵, 𝑎))
9796oveq2d 7218 . . . . 5 (𝑥 = 𝑎 → (1 / if(𝑥𝐵, 𝐵, 𝑥)) = (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9893, 97breq12d 5056 . . . 4 (𝑥 = 𝑎 → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)) ↔ (abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
99 oveq2 7210 . . . . . 6 (𝑦 = 𝑏 → ((𝐴 · 𝑎) − 𝑦) = ((𝐴 · 𝑎) − 𝑏))
10099fveq2d 6710 . . . . 5 (𝑦 = 𝑏 → (abs‘((𝐴 · 𝑎) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑏)))
101100breq1d 5053 . . . 4 (𝑦 = 𝑏 → ((abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)) ↔ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
10298, 101rspc2ev 3542 . . 3 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
1032, 73, 91, 102syl3anc 1373 . 2 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
10419, 21ifcld 4475 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
105 irrapxlem3 40301 . . 3 ((𝐴 ∈ ℝ+ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
1065, 104, 105syl2anc 587 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
107103, 106r19.29vva 3245 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2110  wrex 3055  ifcif 4429   class class class wbr 5043  cfv 6369  (class class class)co 7202  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717   < clt 10850  cle 10851  cmin 11045  -cneg 11046   / cdiv 11472  cn 11813  0cn0 12073  cz 12159  +crp 12569  ...cfz 13078  cfl 13348  abscabs 14780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-rp 12570  df-ico 12924  df-fz 13079  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782
This theorem is referenced by:  irrapxlem5  40303
  Copyright terms: Public domain W3C validator