Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem4 Structured version   Visualization version   GIF version

Theorem irrapxlem4 42482
Description: Lemma for irrapx1 42485. Eliminate ranges, use positivity of the input to force positivity of the output by increasing 𝐵 as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 13584 . . . 4 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ∈ ℕ)
21ad3antlr 729 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℕ)
3 nn0z 12635 . . . . 5 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
43ad2antlr 725 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℤ)
5 simpl 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐴 ∈ ℝ+)
65ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ+)
76rpred 13070 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ)
82nnred 12279 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℝ)
97, 8remulcld 11294 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℝ)
10 nn0re 12533 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
1110ad2antlr 725 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℝ)
129, 11resubcld 11692 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℝ)
1312recnd 11292 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℂ)
1413abscld 15441 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) ∈ ℝ)
155rpreccld 13080 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (1 / 𝐴) ∈ ℝ+)
1615rprege0d 13077 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)))
17 flge0nn0 13840 . . . . . . . . . . . 12 (((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)) → (⌊‘(1 / 𝐴)) ∈ ℕ0)
18 nn0p1nn 12563 . . . . . . . . . . . 12 ((⌊‘(1 / 𝐴)) ∈ ℕ0 → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
1916, 17, 183syl 18 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
2019ad3antrrr 728 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
21 simpr 483 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
2221ad3antrrr 728 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℕ)
2320, 22ifcld 4579 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
2423nnrecred 12315 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ∈ ℝ)
25 0red 11267 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 ∈ ℝ)
269, 25resubcld 11692 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) ∈ ℝ)
27 simpr 483 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
2820nnrecred 12315 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ)
2922nnred 12279 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℝ)
306rprecred 13081 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ∈ ℝ)
3130flcld 13818 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℤ)
3231zred 12718 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℝ)
33 peano2re 11437 . . . . . . . . . . . . 13 ((⌊‘(1 / 𝐴)) ∈ ℝ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
35 max2 13220 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3629, 34, 35syl2anc 582 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3720nngt0d 12313 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < ((⌊‘(1 / 𝐴)) + 1))
3823nnred 12279 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ)
3923nngt0d 12313 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
40 lerec 12149 . . . . . . . . . . . 12 (((((⌊‘(1 / 𝐴)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝐴)) + 1)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4134, 37, 38, 39, 40syl22anc 837 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4236, 41mpbid 231 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1)))
43 fllep1 13821 . . . . . . . . . . . . 13 ((1 / 𝐴) ∈ ℝ → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4430, 43syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4520nncnd 12280 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℂ)
4620nnne0d 12314 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≠ 0)
4745, 46recrecd 12038 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))) = ((⌊‘(1 / 𝐴)) + 1))
4844, 47breqtrrd 5181 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))))
4934, 37recgt0d 12200 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < (1 / ((⌊‘(1 / 𝐴)) + 1)))
506rpgt0d 13073 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐴)
51 lerec 12149 . . . . . . . . . . . 12 ((((1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ ∧ 0 < (1 / ((⌊‘(1 / 𝐴)) + 1))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5228, 49, 7, 50, 51syl22anc 837 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5348, 52mpbird 256 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴)
5424, 28, 7, 42, 53letrd 11421 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ 𝐴)
557recnd 11292 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℂ)
5655mulridd 11281 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) = 𝐴)
572nnge1d 12312 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ≤ 𝑎)
58 1red 11265 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ∈ ℝ)
5958, 8, 6lemul2d 13114 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 ≤ 𝑎 ↔ (𝐴 · 1) ≤ (𝐴 · 𝑎)))
6057, 59mpbid 231 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) ≤ (𝐴 · 𝑎))
6156, 60eqbrtrrd 5177 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ (𝐴 · 𝑎))
629recnd 11292 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℂ)
6362subid1d 11610 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) = (𝐴 · 𝑎))
6461, 63breqtrrd 5181 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ ((𝐴 · 𝑎) − 0))
6524, 7, 26, 54, 64letrd 11421 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ ((𝐴 · 𝑎) − 0))
6614, 24, 26, 27, 65ltletrd 11424 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0))
6712, 26absltd 15434 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0) ↔ (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))))
6866, 67mpbid 231 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
6968simprd 494 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))
7025, 11, 9ltsub2d 11874 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (0 < 𝑏 ↔ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
7169, 70mpbird 256 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝑏)
72 elnnz 12620 . . . 4 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 < 𝑏))
734, 71, 72sylanbrc 581 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℕ)
7422, 2ifcld 4579 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℕ)
7574nnrecred 12315 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝑎𝐵, 𝐵, 𝑎)) ∈ ℝ)
76 elfzle2 13559 . . . . . . 7 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7776ad3antlr 729 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
78 max1 13218 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7929, 34, 78syl2anc 582 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
80 maxle 13224 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
818, 29, 38, 80syl3anc 1368 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
8277, 79, 81mpbir2and 711 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
8329, 8ifcld 4579 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ)
8422nngt0d 12313 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐵)
85 max2 13220 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
868, 29, 85syl2anc 582 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
8725, 29, 83, 84, 86ltletrd 11424 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝑎𝐵, 𝐵, 𝑎))
88 lerec 12149 . . . . . 6 (((if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ ∧ 0 < if(𝑎𝐵, 𝐵, 𝑎)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
8983, 87, 38, 39, 88syl22anc 837 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
9082, 89mpbid 231 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9114, 24, 75, 27, 90ltletrd 11424 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)))
92 oveq2 7432 . . . . . 6 (𝑥 = 𝑎 → (𝐴 · 𝑥) = (𝐴 · 𝑎))
9392fvoveq1d 7446 . . . . 5 (𝑥 = 𝑎 → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑦)))
94 breq1 5156 . . . . . . 7 (𝑥 = 𝑎 → (𝑥𝐵𝑎𝐵))
95 id 22 . . . . . . 7 (𝑥 = 𝑎𝑥 = 𝑎)
9694, 95ifbieq2d 4559 . . . . . 6 (𝑥 = 𝑎 → if(𝑥𝐵, 𝐵, 𝑥) = if(𝑎𝐵, 𝐵, 𝑎))
9796oveq2d 7440 . . . . 5 (𝑥 = 𝑎 → (1 / if(𝑥𝐵, 𝐵, 𝑥)) = (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9893, 97breq12d 5166 . . . 4 (𝑥 = 𝑎 → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)) ↔ (abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
99 oveq2 7432 . . . . . 6 (𝑦 = 𝑏 → ((𝐴 · 𝑎) − 𝑦) = ((𝐴 · 𝑎) − 𝑏))
10099fveq2d 6905 . . . . 5 (𝑦 = 𝑏 → (abs‘((𝐴 · 𝑎) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑏)))
101100breq1d 5163 . . . 4 (𝑦 = 𝑏 → ((abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)) ↔ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
10298, 101rspc2ev 3621 . . 3 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
1032, 73, 91, 102syl3anc 1368 . 2 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
10419, 21ifcld 4579 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
105 irrapxlem3 42481 . . 3 ((𝐴 ∈ ℝ+ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
1065, 104, 105syl2anc 582 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
107103, 106r19.29vva 3204 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099  wrex 3060  ifcif 4533   class class class wbr 5153  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cle 11299  cmin 11494  -cneg 11495   / cdiv 11921  cn 12264  0cn0 12524  cz 12610  +crp 13028  ...cfz 13538  cfl 13810  abscabs 15239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-rp 13029  df-ico 13384  df-fz 13539  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241
This theorem is referenced by:  irrapxlem5  42483
  Copyright terms: Public domain W3C validator