Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem4 Structured version   Visualization version   GIF version

Theorem irrapxlem4 40563
Description: Lemma for irrapx1 40566. Eliminate ranges, use positivity of the input to force positivity of the output by increasing 𝐵 as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 13214 . . . 4 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ∈ ℕ)
21ad3antlr 727 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℕ)
3 nn0z 12273 . . . . 5 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
43ad2antlr 723 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℤ)
5 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐴 ∈ ℝ+)
65ad3antrrr 726 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ+)
76rpred 12701 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ)
82nnred 11918 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℝ)
97, 8remulcld 10936 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℝ)
10 nn0re 12172 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
1110ad2antlr 723 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℝ)
129, 11resubcld 11333 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℝ)
1312recnd 10934 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℂ)
1413abscld 15076 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) ∈ ℝ)
155rpreccld 12711 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (1 / 𝐴) ∈ ℝ+)
1615rprege0d 12708 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)))
17 flge0nn0 13468 . . . . . . . . . . . 12 (((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)) → (⌊‘(1 / 𝐴)) ∈ ℕ0)
18 nn0p1nn 12202 . . . . . . . . . . . 12 ((⌊‘(1 / 𝐴)) ∈ ℕ0 → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
1916, 17, 183syl 18 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
2019ad3antrrr 726 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
21 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
2221ad3antrrr 726 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℕ)
2320, 22ifcld 4502 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
2423nnrecred 11954 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ∈ ℝ)
25 0red 10909 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 ∈ ℝ)
269, 25resubcld 11333 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) ∈ ℝ)
27 simpr 484 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
2820nnrecred 11954 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ)
2922nnred 11918 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℝ)
306rprecred 12712 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ∈ ℝ)
3130flcld 13446 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℤ)
3231zred 12355 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℝ)
33 peano2re 11078 . . . . . . . . . . . . 13 ((⌊‘(1 / 𝐴)) ∈ ℝ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
35 max2 12850 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3629, 34, 35syl2anc 583 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3720nngt0d 11952 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < ((⌊‘(1 / 𝐴)) + 1))
3823nnred 11918 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ)
3923nngt0d 11952 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
40 lerec 11788 . . . . . . . . . . . 12 (((((⌊‘(1 / 𝐴)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝐴)) + 1)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4134, 37, 38, 39, 40syl22anc 835 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4236, 41mpbid 231 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1)))
43 fllep1 13449 . . . . . . . . . . . . 13 ((1 / 𝐴) ∈ ℝ → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4430, 43syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4520nncnd 11919 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℂ)
4620nnne0d 11953 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≠ 0)
4745, 46recrecd 11678 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))) = ((⌊‘(1 / 𝐴)) + 1))
4844, 47breqtrrd 5098 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))))
4934, 37recgt0d 11839 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < (1 / ((⌊‘(1 / 𝐴)) + 1)))
506rpgt0d 12704 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐴)
51 lerec 11788 . . . . . . . . . . . 12 ((((1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ ∧ 0 < (1 / ((⌊‘(1 / 𝐴)) + 1))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5228, 49, 7, 50, 51syl22anc 835 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5348, 52mpbird 256 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴)
5424, 28, 7, 42, 53letrd 11062 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ 𝐴)
557recnd 10934 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℂ)
5655mulid1d 10923 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) = 𝐴)
572nnge1d 11951 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ≤ 𝑎)
58 1red 10907 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ∈ ℝ)
5958, 8, 6lemul2d 12745 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 ≤ 𝑎 ↔ (𝐴 · 1) ≤ (𝐴 · 𝑎)))
6057, 59mpbid 231 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) ≤ (𝐴 · 𝑎))
6156, 60eqbrtrrd 5094 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ (𝐴 · 𝑎))
629recnd 10934 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℂ)
6362subid1d 11251 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) = (𝐴 · 𝑎))
6461, 63breqtrrd 5098 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ ((𝐴 · 𝑎) − 0))
6524, 7, 26, 54, 64letrd 11062 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ ((𝐴 · 𝑎) − 0))
6614, 24, 26, 27, 65ltletrd 11065 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0))
6712, 26absltd 15069 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0) ↔ (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))))
6866, 67mpbid 231 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
6968simprd 495 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))
7025, 11, 9ltsub2d 11515 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (0 < 𝑏 ↔ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
7169, 70mpbird 256 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝑏)
72 elnnz 12259 . . . 4 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 < 𝑏))
734, 71, 72sylanbrc 582 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℕ)
7422, 2ifcld 4502 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℕ)
7574nnrecred 11954 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝑎𝐵, 𝐵, 𝑎)) ∈ ℝ)
76 elfzle2 13189 . . . . . . 7 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7776ad3antlr 727 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
78 max1 12848 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7929, 34, 78syl2anc 583 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
80 maxle 12854 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
818, 29, 38, 80syl3anc 1369 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
8277, 79, 81mpbir2and 709 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
8329, 8ifcld 4502 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ)
8422nngt0d 11952 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐵)
85 max2 12850 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
868, 29, 85syl2anc 583 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
8725, 29, 83, 84, 86ltletrd 11065 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝑎𝐵, 𝐵, 𝑎))
88 lerec 11788 . . . . . 6 (((if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ ∧ 0 < if(𝑎𝐵, 𝐵, 𝑎)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
8983, 87, 38, 39, 88syl22anc 835 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
9082, 89mpbid 231 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9114, 24, 75, 27, 90ltletrd 11065 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)))
92 oveq2 7263 . . . . . 6 (𝑥 = 𝑎 → (𝐴 · 𝑥) = (𝐴 · 𝑎))
9392fvoveq1d 7277 . . . . 5 (𝑥 = 𝑎 → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑦)))
94 breq1 5073 . . . . . . 7 (𝑥 = 𝑎 → (𝑥𝐵𝑎𝐵))
95 id 22 . . . . . . 7 (𝑥 = 𝑎𝑥 = 𝑎)
9694, 95ifbieq2d 4482 . . . . . 6 (𝑥 = 𝑎 → if(𝑥𝐵, 𝐵, 𝑥) = if(𝑎𝐵, 𝐵, 𝑎))
9796oveq2d 7271 . . . . 5 (𝑥 = 𝑎 → (1 / if(𝑥𝐵, 𝐵, 𝑥)) = (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9893, 97breq12d 5083 . . . 4 (𝑥 = 𝑎 → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)) ↔ (abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
99 oveq2 7263 . . . . . 6 (𝑦 = 𝑏 → ((𝐴 · 𝑎) − 𝑦) = ((𝐴 · 𝑎) − 𝑏))
10099fveq2d 6760 . . . . 5 (𝑦 = 𝑏 → (abs‘((𝐴 · 𝑎) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑏)))
101100breq1d 5080 . . . 4 (𝑦 = 𝑏 → ((abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)) ↔ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
10298, 101rspc2ev 3564 . . 3 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
1032, 73, 91, 102syl3anc 1369 . 2 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
10419, 21ifcld 4502 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
105 irrapxlem3 40562 . . 3 ((𝐴 ∈ ℝ+ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
1065, 104, 105syl2anc 583 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
107103, 106r19.29vva 3263 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wrex 3064  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  +crp 12659  ...cfz 13168  cfl 13438  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  irrapxlem5  40564
  Copyright terms: Public domain W3C validator