Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem4 Structured version   Visualization version   GIF version

Theorem irrapxlem4 38920
Description: Lemma for irrapx1 38923. Eliminate ranges, use positivity of the input to force positivity of the output by increasing 𝐵 as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 12786 . . . 4 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ∈ ℕ)
21ad3antlr 727 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℕ)
3 nn0z 11855 . . . . 5 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
43ad2antlr 723 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℤ)
5 simpl 483 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐴 ∈ ℝ+)
65ad3antrrr 726 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ+)
76rpred 12281 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ)
82nnred 11503 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℝ)
97, 8remulcld 10520 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℝ)
10 nn0re 11756 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
1110ad2antlr 723 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℝ)
129, 11resubcld 10918 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℝ)
1312recnd 10518 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℂ)
1413abscld 14630 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) ∈ ℝ)
155rpreccld 12291 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (1 / 𝐴) ∈ ℝ+)
1615rprege0d 12288 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)))
17 flge0nn0 13040 . . . . . . . . . . . 12 (((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)) → (⌊‘(1 / 𝐴)) ∈ ℕ0)
18 nn0p1nn 11786 . . . . . . . . . . . 12 ((⌊‘(1 / 𝐴)) ∈ ℕ0 → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
1916, 17, 183syl 18 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
2019ad3antrrr 726 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
21 simpr 485 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
2221ad3antrrr 726 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℕ)
2320, 22ifcld 4428 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
2423nnrecred 11538 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ∈ ℝ)
25 0red 10493 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 ∈ ℝ)
269, 25resubcld 10918 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) ∈ ℝ)
27 simpr 485 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
2820nnrecred 11538 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ)
2922nnred 11503 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℝ)
306rprecred 12292 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ∈ ℝ)
3130flcld 13018 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℤ)
3231zred 11937 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℝ)
33 peano2re 10662 . . . . . . . . . . . . 13 ((⌊‘(1 / 𝐴)) ∈ ℝ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
35 max2 12430 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3629, 34, 35syl2anc 584 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3720nngt0d 11536 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < ((⌊‘(1 / 𝐴)) + 1))
3823nnred 11503 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ)
3923nngt0d 11536 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
40 lerec 11373 . . . . . . . . . . . 12 (((((⌊‘(1 / 𝐴)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝐴)) + 1)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4134, 37, 38, 39, 40syl22anc 835 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4236, 41mpbid 233 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1)))
43 fllep1 13021 . . . . . . . . . . . . 13 ((1 / 𝐴) ∈ ℝ → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4430, 43syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4520nncnd 11504 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℂ)
4620nnne0d 11537 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≠ 0)
4745, 46recrecd 11263 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))) = ((⌊‘(1 / 𝐴)) + 1))
4844, 47breqtrrd 4992 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))))
4934, 37recgt0d 11424 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < (1 / ((⌊‘(1 / 𝐴)) + 1)))
506rpgt0d 12284 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐴)
51 lerec 11373 . . . . . . . . . . . 12 ((((1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ ∧ 0 < (1 / ((⌊‘(1 / 𝐴)) + 1))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5228, 49, 7, 50, 51syl22anc 835 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5348, 52mpbird 258 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴)
5424, 28, 7, 42, 53letrd 10646 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ 𝐴)
557recnd 10518 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℂ)
5655mulid1d 10507 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) = 𝐴)
572nnge1d 11535 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ≤ 𝑎)
58 1red 10491 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ∈ ℝ)
5958, 8, 6lemul2d 12325 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 ≤ 𝑎 ↔ (𝐴 · 1) ≤ (𝐴 · 𝑎)))
6057, 59mpbid 233 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) ≤ (𝐴 · 𝑎))
6156, 60eqbrtrrd 4988 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ (𝐴 · 𝑎))
629recnd 10518 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℂ)
6362subid1d 10836 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) = (𝐴 · 𝑎))
6461, 63breqtrrd 4992 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ ((𝐴 · 𝑎) − 0))
6524, 7, 26, 54, 64letrd 10646 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ ((𝐴 · 𝑎) − 0))
6614, 24, 26, 27, 65ltletrd 10649 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0))
6712, 26absltd 14623 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0) ↔ (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))))
6866, 67mpbid 233 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
6968simprd 496 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))
7025, 11, 9ltsub2d 11100 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (0 < 𝑏 ↔ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
7169, 70mpbird 258 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝑏)
72 elnnz 11841 . . . 4 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 < 𝑏))
734, 71, 72sylanbrc 583 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℕ)
7422, 2ifcld 4428 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℕ)
7574nnrecred 11538 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝑎𝐵, 𝐵, 𝑎)) ∈ ℝ)
76 elfzle2 12761 . . . . . . 7 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7776ad3antlr 727 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
78 max1 12428 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7929, 34, 78syl2anc 584 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
80 maxle 12434 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
818, 29, 38, 80syl3anc 1364 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
8277, 79, 81mpbir2and 709 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
8329, 8ifcld 4428 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ)
8422nngt0d 11536 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐵)
85 max2 12430 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
868, 29, 85syl2anc 584 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
8725, 29, 83, 84, 86ltletrd 10649 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝑎𝐵, 𝐵, 𝑎))
88 lerec 11373 . . . . . 6 (((if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ ∧ 0 < if(𝑎𝐵, 𝐵, 𝑎)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
8983, 87, 38, 39, 88syl22anc 835 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
9082, 89mpbid 233 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9114, 24, 75, 27, 90ltletrd 10649 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)))
92 oveq2 7027 . . . . . 6 (𝑥 = 𝑎 → (𝐴 · 𝑥) = (𝐴 · 𝑎))
9392fvoveq1d 7041 . . . . 5 (𝑥 = 𝑎 → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑦)))
94 breq1 4967 . . . . . . 7 (𝑥 = 𝑎 → (𝑥𝐵𝑎𝐵))
95 id 22 . . . . . . 7 (𝑥 = 𝑎𝑥 = 𝑎)
9694, 95ifbieq2d 4408 . . . . . 6 (𝑥 = 𝑎 → if(𝑥𝐵, 𝐵, 𝑥) = if(𝑎𝐵, 𝐵, 𝑎))
9796oveq2d 7035 . . . . 5 (𝑥 = 𝑎 → (1 / if(𝑥𝐵, 𝐵, 𝑥)) = (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9893, 97breq12d 4977 . . . 4 (𝑥 = 𝑎 → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)) ↔ (abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
99 oveq2 7027 . . . . . 6 (𝑦 = 𝑏 → ((𝐴 · 𝑎) − 𝑦) = ((𝐴 · 𝑎) − 𝑏))
10099fveq2d 6545 . . . . 5 (𝑦 = 𝑏 → (abs‘((𝐴 · 𝑎) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑏)))
101100breq1d 4974 . . . 4 (𝑦 = 𝑏 → ((abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)) ↔ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
10298, 101rspc2ev 3572 . . 3 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
1032, 73, 91, 102syl3anc 1364 . 2 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
10419, 21ifcld 4428 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
105 irrapxlem3 38919 . . 3 ((𝐴 ∈ ℝ+ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
1065, 104, 105syl2anc 584 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
107103, 106r19.29vva 3296 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2080  wrex 3105  ifcif 4383   class class class wbr 4964  cfv 6228  (class class class)co 7019  cr 10385  0cc0 10386  1c1 10387   + caddc 10389   · cmul 10391   < clt 10524  cle 10525  cmin 10719  -cneg 10720   / cdiv 11147  cn 11488  0cn0 11747  cz 11831  +crp 12239  ...cfz 12742  cfl 13010  abscabs 14427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-1st 7548  df-2nd 7549  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-oadd 7960  df-er 8142  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-sup 8755  df-inf 8756  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-n0 11748  df-xnn0 11818  df-z 11832  df-uz 12094  df-rp 12240  df-ico 12594  df-fz 12743  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429
This theorem is referenced by:  irrapxlem5  38921
  Copyright terms: Public domain W3C validator