Step | Hyp | Ref
| Expression |
1 | | cgracol.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | cgracol.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
3 | | eqid 2738 |
. . 3
⊢
(hlG‘𝐺) =
(hlG‘𝐺) |
4 | | simpllr 772 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥 ∈ 𝑃) |
5 | | cgracol.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
6 | 5 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷 ∈ 𝑃) |
7 | | cgracol.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
8 | 7 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐹 ∈ 𝑃) |
9 | | cgracol.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
10 | 9 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) |
11 | | cgracol.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
12 | 11 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) |
13 | | simpr2 1193 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥((hlG‘𝐺)‘𝐸)𝐷) |
14 | | cgracol.m |
. . . 4
⊢ − =
(dist‘𝐺) |
15 | | simplr 765 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦 ∈ 𝑃) |
16 | | simpr3 1194 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦((hlG‘𝐺)‘𝐸)𝐹) |
17 | | eqid 2738 |
. . . . . . 7
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
18 | | cgracol.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
19 | 18 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐴 ∈ 𝑃) |
20 | | cgracol.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
21 | 20 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐵 ∈ 𝑃) |
22 | | cgracol.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
23 | 22 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐶 ∈ 𝑃) |
24 | | simpr1 1192 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉) |
25 | | cgrabtwn.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
26 | 25 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
27 | 1, 14, 2, 17, 10, 19, 21, 23, 4, 12, 15, 24, 26 | tgbtwnxfr 26795 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑥𝐼𝑦)) |
28 | 1, 14, 2, 10, 4, 12, 15, 27 | tgbtwncom 26753 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑦𝐼𝑥)) |
29 | 1, 2, 3, 15, 8, 4,
10, 12, 16, 28 | btwnhl 26879 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝐹𝐼𝑥)) |
30 | 1, 14, 2, 10, 8, 12, 4, 29 | tgbtwncom 26753 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑥𝐼𝐹)) |
31 | 1, 2, 3, 4, 6, 8, 10, 12, 13, 30 | btwnhl 26879 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝐷𝐼𝐹)) |
32 | | cgracol.1 |
. . 3
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
33 | 1, 2, 3, 9, 18, 20, 22, 5, 11, 7 | iscgra 27074 |
. . 3
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹))) |
34 | 32, 33 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) |
35 | 31, 34 | r19.29vva 3263 |
1
⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) |