MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  midex Structured version   Visualization version   GIF version

Theorem midex 26205
Description: Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideu.3 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
midex (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥

Proof of Theorem midex
Dummy variables 𝑝 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mideu.1 . . 3 (𝜑𝐴𝑃)
2 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
3 colperpex.d . . . . 5 = (dist‘𝐺)
4 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
5 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
6 mideu.s . . . . 5 𝑆 = (pInvG‘𝐺)
7 colperpex.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
87adantr 481 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
91adantr 481 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
10 eqid 2795 . . . . 5 (𝑆𝐴) = (𝑆𝐴)
112, 3, 4, 5, 6, 8, 9, 10mircinv 26136 . . . 4 ((𝜑𝐴 = 𝐵) → ((𝑆𝐴)‘𝐴) = 𝐴)
12 simpr 485 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
1311, 12eqtr2d 2832 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵 = ((𝑆𝐴)‘𝐴))
14 fveq2 6538 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
1514fveq1d 6540 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥)‘𝐴) = ((𝑆𝐴)‘𝐴))
1615rspceeqv 3577 . . 3 ((𝐴𝑃𝐵 = ((𝑆𝐴)‘𝐴)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
171, 13, 16syl2an2r 681 . 2 ((𝜑𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
187ad3antrrr 726 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
1918ad4antr 728 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐺 ∈ TarskiG)
201ad3antrrr 726 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
2120ad4antr 728 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐴𝑃)
22 mideu.2 . . . . . . . 8 (𝜑𝐵𝑃)
2322ad3antrrr 726 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
2423ad4antr 728 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐵𝑃)
25 simpllr 772 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝐵)
2625ad4antr 728 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐴𝐵)
27 simplr 765 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑞𝑃)
2827ad4antr 728 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑞𝑃)
29 simp-4r 780 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑝𝑃)
30 simpllr 772 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡𝑃)
31 simp-5r 782 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
325, 19, 31perpln1 26178 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞) ∈ ran 𝐿)
332, 4, 5, 19, 21, 24, 26tgelrnln 26098 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
342, 3, 4, 5, 19, 32, 33, 31perpcom 26181 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝑞))
352, 4, 5, 19, 24, 28, 32tglnne 26096 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐵𝑞)
362, 4, 5, 19, 24, 28, 35tglinecom 26103 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞) = (𝑞𝐿𝐵))
3734, 36breqtrd 4988 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑞𝐿𝐵))
38 simplr 765 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
3938simpld 495 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
405, 19, 39perpln1 26178 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝑝) ∈ ran 𝐿)
412, 3, 4, 5, 19, 40, 33, 39perpcom 26181 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑝))
4226neneqd 2989 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ¬ 𝐴 = 𝐵)
4338simprd 496 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))
4443simpld 495 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
4544orcomd 866 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
4645ord 859 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (¬ 𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
4742, 46mpd 15 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡 ∈ (𝐴𝐿𝐵))
4843simprd 496 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡 ∈ (𝑞𝐼𝑝))
49 simpr 485 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞))
502, 3, 4, 5, 19, 6, 21, 24, 26, 28, 29, 30, 37, 41, 47, 48, 49mideulem 26204 . . . . 5 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
5118ad4antr 728 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐺 ∈ TarskiG)
5251adantr 481 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐺 ∈ TarskiG)
53 simprl 767 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝑥𝑃)
54 eqid 2795 . . . . . . . 8 (𝑆𝑥) = (𝑆𝑥)
5523ad4antr 728 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐵𝑃)
5655adantr 481 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐵𝑃)
57 simprr 769 . . . . . . . . 9 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐴 = ((𝑆𝑥)‘𝐵))
5857eqcomd 2801 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → ((𝑆𝑥)‘𝐵) = 𝐴)
592, 3, 4, 5, 6, 52, 53, 54, 56, 58mircom 26131 . . . . . . 7 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → ((𝑆𝑥)‘𝐴) = 𝐵)
6059eqcomd 2801 . . . . . 6 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐵 = ((𝑆𝑥)‘𝐴))
6120ad4antr 728 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝑃)
6225ad4antr 728 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝐵)
6362necomd 3039 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐵𝐴)
64 simp-4r 780 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑝𝑃)
6527ad4antr 728 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑞𝑃)
66 simpllr 772 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡𝑃)
67 simplr 765 . . . . . . . . . . . . 13 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
6867simpld 495 . . . . . . . . . . . 12 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
695, 51, 68perpln1 26178 . . . . . . . . . . 11 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝) ∈ ran 𝐿)
702, 4, 5, 51, 61, 64, 69tglnne 26096 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝑝)
712, 4, 5, 51, 61, 64, 70tglinecom 26103 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝) = (𝑝𝐿𝐴))
7271, 69eqeltrrd 2884 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴) ∈ ran 𝐿)
732, 4, 5, 51, 55, 61, 63tgelrnln 26098 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴) ∈ ran 𝐿)
742, 4, 5, 51, 61, 55, 62tglinecom 26103 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
7568, 71, 743brtr3d 4993 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴)(⟂G‘𝐺)(𝐵𝐿𝐴))
762, 3, 4, 5, 51, 72, 73, 75perpcom 26181 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝑝𝐿𝐴))
77 simp-5r 782 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
785, 51, 77perpln1 26178 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞) ∈ ran 𝐿)
7977, 74breqtrd 4988 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴))
802, 3, 4, 5, 51, 78, 73, 79perpcom 26181 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐵𝐿𝑞))
8162neneqd 2989 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ¬ 𝐴 = 𝐵)
8267simprd 496 . . . . . . . . . . . 12 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))
8382simpld 495 . . . . . . . . . . 11 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
8483orcomd 866 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
8584ord 859 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (¬ 𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
8681, 85mpd 15 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝐴𝐿𝐵))
8786, 74eleqtrd 2885 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝐵𝐿𝐴))
8882simprd 496 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝑞𝐼𝑝))
892, 3, 4, 51, 65, 66, 64, 88tgbtwncom 25956 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝑝𝐼𝑞))
90 simpr 485 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝))
912, 3, 4, 5, 51, 6, 55, 61, 63, 64, 65, 66, 76, 80, 87, 89, 90mideulem 26204 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ∃𝑥𝑃 𝐴 = ((𝑆𝑥)‘𝐵))
9260, 91reximddv 3238 . . . . 5 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
93 eqid 2795 . . . . . 6 (≤G‘𝐺) = (≤G‘𝐺)
9418ad3antrrr 726 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐺 ∈ TarskiG)
9520ad3antrrr 726 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐴𝑃)
96 simpllr 772 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝑝𝑃)
9723ad3antrrr 726 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐵𝑃)
98 simp-5r 782 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝑞𝑃)
992, 3, 4, 93, 94, 95, 96, 97, 98legtrid 26059 . . . . 5 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → ((𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞) ∨ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)))
10050, 92, 99mpjaodan 953 . . . 4 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
101 mideu.3 . . . . . . 7 (𝜑𝐺DimTarskiG≥2)
102101ad3antrrr 726 . . . . . 6 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺DimTarskiG≥2)
1032, 3, 4, 5, 18, 20, 23, 27, 25, 102colperpex 26201 . . . . 5 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
104 r19.42v 3311 . . . . . 6 (∃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))) ↔ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
105104rexbii 3211 . . . . 5 (∃𝑝𝑃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))) ↔ ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
106103, 105sylibr 235 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
107100, 106r19.29vva 3297 . . 3 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
1087adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
10922adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝑃)
1101adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝑃)
111 simpr 485 . . . . . 6 ((𝜑𝐴𝐵) → 𝐴𝐵)
112111necomd 3039 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝐴)
113101adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐺DimTarskiG≥2)
1142, 3, 4, 5, 108, 109, 110, 110, 112, 113colperpex 26201 . . . 4 ((𝜑𝐴𝐵) → ∃𝑞𝑃 ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))))
115 simprl 767 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴))
1162, 4, 5, 108, 110, 109, 111tglinecom 26103 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
117116adantr 481 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
118115, 117breqtrrd 4990 . . . . . 6 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
119118ex 413 . . . . 5 ((𝜑𝐴𝐵) → (((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)))
120119reximdv 3236 . . . 4 ((𝜑𝐴𝐵) → (∃𝑞𝑃 ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))) → ∃𝑞𝑃 (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)))
121114, 120mpd 15 . . 3 ((𝜑𝐴𝐵) → ∃𝑞𝑃 (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
122107, 121r19.29a 3252 . 2 ((𝜑𝐴𝐵) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
12317, 122pm2.61dane 3072 1 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 842   = wceq 1522  wcel 2081  wne 2984  wrex 3106   class class class wbr 4962  ran crn 5444  cfv 6225  (class class class)co 7016  2c2 11540  Basecbs 16312  distcds 16403  TarskiGcstrkg 25898  DimTarskiGcstrkgld 25902  Itvcitv 25904  LineGclng 25905  ≤Gcleg 26050  pInvGcmir 26120  ⟂Gcperpg 26163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-xnn0 11816  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884  df-hash 13541  df-word 13708  df-concat 13769  df-s1 13794  df-s2 14046  df-s3 14047  df-trkgc 25916  df-trkgb 25917  df-trkgcb 25918  df-trkgld 25920  df-trkg 25921  df-cgrg 25979  df-leg 26051  df-mir 26121  df-rag 26162  df-perpg 26164
This theorem is referenced by:  mideu  26206  opphllem5  26219  opphl  26222
  Copyright terms: Public domain W3C validator