![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringlsmss2 | Structured version Visualization version GIF version |
Description: The product with an ideal of a ring is a subset of that ideal. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
Ref | Expression |
---|---|
ringlsmss.1 | β’ π΅ = (Baseβπ ) |
ringlsmss.2 | β’ πΊ = (mulGrpβπ ) |
ringlsmss.3 | β’ Γ = (LSSumβπΊ) |
ringlsmss2.1 | β’ (π β π β Ring) |
ringlsmss2.2 | β’ (π β πΈ β π΅) |
ringlsmss2.3 | β’ (π β πΌ β (LIdealβπ )) |
Ref | Expression |
---|---|
ringlsmss2 | β’ (π β (πΈ Γ πΌ) β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . . 5 β’ (((((π β§ π β (πΈ Γ πΌ)) β§ π β πΈ) β§ π β πΌ) β§ π = (π(.rβπ )π)) β π = (π(.rβπ )π)) | |
2 | ringlsmss2.1 | . . . . . . . . 9 β’ (π β π β Ring) | |
3 | 2 | ad2antrr 724 | . . . . . . . 8 β’ (((π β§ π β πΈ) β§ π β πΌ) β π β Ring) |
4 | ringlsmss2.3 | . . . . . . . . 9 β’ (π β πΌ β (LIdealβπ )) | |
5 | 4 | ad2antrr 724 | . . . . . . . 8 β’ (((π β§ π β πΈ) β§ π β πΌ) β πΌ β (LIdealβπ )) |
6 | ringlsmss2.2 | . . . . . . . . . 10 β’ (π β πΈ β π΅) | |
7 | 6 | sselda 3972 | . . . . . . . . 9 β’ ((π β§ π β πΈ) β π β π΅) |
8 | 7 | adantr 479 | . . . . . . . 8 β’ (((π β§ π β πΈ) β§ π β πΌ) β π β π΅) |
9 | simpr 483 | . . . . . . . 8 β’ (((π β§ π β πΈ) β§ π β πΌ) β π β πΌ) | |
10 | eqid 2725 | . . . . . . . . 9 β’ (LIdealβπ ) = (LIdealβπ ) | |
11 | ringlsmss.1 | . . . . . . . . 9 β’ π΅ = (Baseβπ ) | |
12 | eqid 2725 | . . . . . . . . 9 β’ (.rβπ ) = (.rβπ ) | |
13 | 10, 11, 12 | lidlmcl 21123 | . . . . . . . 8 β’ (((π β Ring β§ πΌ β (LIdealβπ )) β§ (π β π΅ β§ π β πΌ)) β (π(.rβπ )π) β πΌ) |
14 | 3, 5, 8, 9, 13 | syl22anc 837 | . . . . . . 7 β’ (((π β§ π β πΈ) β§ π β πΌ) β (π(.rβπ )π) β πΌ) |
15 | 14 | adantllr 717 | . . . . . 6 β’ ((((π β§ π β (πΈ Γ πΌ)) β§ π β πΈ) β§ π β πΌ) β (π(.rβπ )π) β πΌ) |
16 | 15 | adantr 479 | . . . . 5 β’ (((((π β§ π β (πΈ Γ πΌ)) β§ π β πΈ) β§ π β πΌ) β§ π = (π(.rβπ )π)) β (π(.rβπ )π) β πΌ) |
17 | 1, 16 | eqeltrd 2825 | . . . 4 β’ (((((π β§ π β (πΈ Γ πΌ)) β§ π β πΈ) β§ π β πΌ) β§ π = (π(.rβπ )π)) β π β πΌ) |
18 | ringlsmss.2 | . . . . . 6 β’ πΊ = (mulGrpβπ ) | |
19 | ringlsmss.3 | . . . . . 6 β’ Γ = (LSSumβπΊ) | |
20 | 11, 10 | lidlss 21110 | . . . . . . 7 β’ (πΌ β (LIdealβπ ) β πΌ β π΅) |
21 | 4, 20 | syl 17 | . . . . . 6 β’ (π β πΌ β π΅) |
22 | 11, 12, 18, 19, 6, 21 | elringlsm 33150 | . . . . 5 β’ (π β (π β (πΈ Γ πΌ) β βπ β πΈ βπ β πΌ π = (π(.rβπ )π))) |
23 | 22 | biimpa 475 | . . . 4 β’ ((π β§ π β (πΈ Γ πΌ)) β βπ β πΈ βπ β πΌ π = (π(.rβπ )π)) |
24 | 17, 23 | r19.29vva 3204 | . . 3 β’ ((π β§ π β (πΈ Γ πΌ)) β π β πΌ) |
25 | 24 | ex 411 | . 2 β’ (π β (π β (πΈ Γ πΌ) β π β πΌ)) |
26 | 25 | ssrdv 3978 | 1 β’ (π β (πΈ Γ πΌ) β πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βwrex 3060 β wss 3940 βcfv 6542 (class class class)co 7415 Basecbs 17177 .rcmulr 17231 LSSumclsm 19591 mulGrpcmgp 20076 Ringcrg 20175 LIdealclidl 21104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-lsm 19593 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-subrg 20510 df-lmod 20747 df-lss 20818 df-sra 21060 df-rgmod 21061 df-lidl 21106 |
This theorem is referenced by: idlsrgmulrss2 33271 |
Copyright terms: Public domain | W3C validator |