Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringlsmss1 | Structured version Visualization version GIF version |
Description: The product of an ideal 𝐼 of a commutative ring 𝑅 with some set E is a subset of the ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.) |
Ref | Expression |
---|---|
ringlsmss.1 | ⊢ 𝐵 = (Base‘𝑅) |
ringlsmss.2 | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringlsmss.3 | ⊢ × = (LSSum‘𝐺) |
ringlsmss1.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
ringlsmss1.2 | ⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
ringlsmss1.3 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
Ref | Expression |
---|---|
ringlsmss1 | ⊢ (𝜑 → (𝐼 × 𝐸) ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) ∧ 𝑎 = (𝑖(.r‘𝑅)𝑒)) → 𝑎 = (𝑖(.r‘𝑅)𝑒)) | |
2 | ringlsmss1.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
3 | 2 | ad2antrr 722 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑅 ∈ CRing) |
4 | ringlsmss1.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ⊆ 𝐵) | |
5 | 4 | sselda 3917 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐵) |
6 | 5 | adantlr 711 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐵) |
7 | ringlsmss1.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
8 | ringlsmss.1 | . . . . . . . . . . . . 13 ⊢ 𝐵 = (Base‘𝑅) | |
9 | eqid 2738 | . . . . . . . . . . . . 13 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
10 | 8, 9 | lidlss 20394 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ 𝐵) |
11 | 7, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
12 | 11 | sselda 3917 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐵) |
13 | 12 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑖 ∈ 𝐵) |
14 | eqid 2738 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
15 | 8, 14 | crngcom 19716 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑒 ∈ 𝐵 ∧ 𝑖 ∈ 𝐵) → (𝑒(.r‘𝑅)𝑖) = (𝑖(.r‘𝑅)𝑒)) |
16 | 3, 6, 13, 15 | syl3anc 1369 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑒(.r‘𝑅)𝑖) = (𝑖(.r‘𝑅)𝑒)) |
17 | crngring 19710 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
18 | 2, 17 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ Ring) |
19 | 18 | ad2antrr 722 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑅 ∈ Ring) |
20 | 7 | ad2antrr 722 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝐼 ∈ (LIdeal‘𝑅)) |
21 | simplr 765 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑖 ∈ 𝐼) | |
22 | 9, 8, 14 | lidlmcl 20401 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼)) → (𝑒(.r‘𝑅)𝑖) ∈ 𝐼) |
23 | 19, 20, 6, 21, 22 | syl22anc 835 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑒(.r‘𝑅)𝑖) ∈ 𝐼) |
24 | 16, 23 | eqeltrrd 2840 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑖(.r‘𝑅)𝑒) ∈ 𝐼) |
25 | 24 | adantllr 715 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑖(.r‘𝑅)𝑒) ∈ 𝐼) |
26 | 25 | adantr 480 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) ∧ 𝑎 = (𝑖(.r‘𝑅)𝑒)) → (𝑖(.r‘𝑅)𝑒) ∈ 𝐼) |
27 | 1, 26 | eqeltrd 2839 | . . . 4 ⊢ (((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) ∧ 𝑎 = (𝑖(.r‘𝑅)𝑒)) → 𝑎 ∈ 𝐼) |
28 | ringlsmss.2 | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝑅) | |
29 | ringlsmss.3 | . . . . . 6 ⊢ × = (LSSum‘𝐺) | |
30 | 8, 14, 28, 29, 11, 4 | elringlsm 31483 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ (𝐼 × 𝐸) ↔ ∃𝑖 ∈ 𝐼 ∃𝑒 ∈ 𝐸 𝑎 = (𝑖(.r‘𝑅)𝑒))) |
31 | 30 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) → ∃𝑖 ∈ 𝐼 ∃𝑒 ∈ 𝐸 𝑎 = (𝑖(.r‘𝑅)𝑒)) |
32 | 27, 31 | r19.29vva 3263 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) → 𝑎 ∈ 𝐼) |
33 | 32 | ex 412 | . 2 ⊢ (𝜑 → (𝑎 ∈ (𝐼 × 𝐸) → 𝑎 ∈ 𝐼)) |
34 | 33 | ssrdv 3923 | 1 ⊢ (𝜑 → (𝐼 × 𝐸) ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 LSSumclsm 19154 mulGrpcmgp 19635 Ringcrg 19698 CRingccrg 19699 LIdealclidl 20347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-lsm 19156 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-lidl 20351 |
This theorem is referenced by: idlsrgmulrss1 31558 |
Copyright terms: Public domain | W3C validator |