Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringlsmss1 | Structured version Visualization version GIF version |
Description: The product of an ideal 𝐼 of a commutative ring 𝑅 with some set E is a subset of the ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.) |
Ref | Expression |
---|---|
ringlsmss.1 | ⊢ 𝐵 = (Base‘𝑅) |
ringlsmss.2 | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringlsmss.3 | ⊢ × = (LSSum‘𝐺) |
ringlsmss1.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
ringlsmss1.2 | ⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
ringlsmss1.3 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
Ref | Expression |
---|---|
ringlsmss1 | ⊢ (𝜑 → (𝐼 × 𝐸) ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) ∧ 𝑎 = (𝑖(.r‘𝑅)𝑒)) → 𝑎 = (𝑖(.r‘𝑅)𝑒)) | |
2 | ringlsmss1.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
3 | 2 | ad2antrr 723 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑅 ∈ CRing) |
4 | ringlsmss1.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ⊆ 𝐵) | |
5 | 4 | sselda 3921 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐵) |
6 | 5 | adantlr 712 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐵) |
7 | ringlsmss1.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
8 | ringlsmss.1 | . . . . . . . . . . . . 13 ⊢ 𝐵 = (Base‘𝑅) | |
9 | eqid 2738 | . . . . . . . . . . . . 13 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
10 | 8, 9 | lidlss 20481 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ 𝐵) |
11 | 7, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
12 | 11 | sselda 3921 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐵) |
13 | 12 | adantr 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑖 ∈ 𝐵) |
14 | eqid 2738 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
15 | 8, 14 | crngcom 19801 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑒 ∈ 𝐵 ∧ 𝑖 ∈ 𝐵) → (𝑒(.r‘𝑅)𝑖) = (𝑖(.r‘𝑅)𝑒)) |
16 | 3, 6, 13, 15 | syl3anc 1370 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑒(.r‘𝑅)𝑖) = (𝑖(.r‘𝑅)𝑒)) |
17 | crngring 19795 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
18 | 2, 17 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ Ring) |
19 | 18 | ad2antrr 723 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑅 ∈ Ring) |
20 | 7 | ad2antrr 723 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝐼 ∈ (LIdeal‘𝑅)) |
21 | simplr 766 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑖 ∈ 𝐼) | |
22 | 9, 8, 14 | lidlmcl 20488 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼)) → (𝑒(.r‘𝑅)𝑖) ∈ 𝐼) |
23 | 19, 20, 6, 21, 22 | syl22anc 836 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑒(.r‘𝑅)𝑖) ∈ 𝐼) |
24 | 16, 23 | eqeltrrd 2840 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑖(.r‘𝑅)𝑒) ∈ 𝐼) |
25 | 24 | adantllr 716 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑖(.r‘𝑅)𝑒) ∈ 𝐼) |
26 | 25 | adantr 481 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) ∧ 𝑎 = (𝑖(.r‘𝑅)𝑒)) → (𝑖(.r‘𝑅)𝑒) ∈ 𝐼) |
27 | 1, 26 | eqeltrd 2839 | . . . 4 ⊢ (((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) ∧ 𝑎 = (𝑖(.r‘𝑅)𝑒)) → 𝑎 ∈ 𝐼) |
28 | ringlsmss.2 | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝑅) | |
29 | ringlsmss.3 | . . . . . 6 ⊢ × = (LSSum‘𝐺) | |
30 | 8, 14, 28, 29, 11, 4 | elringlsm 31581 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ (𝐼 × 𝐸) ↔ ∃𝑖 ∈ 𝐼 ∃𝑒 ∈ 𝐸 𝑎 = (𝑖(.r‘𝑅)𝑒))) |
31 | 30 | biimpa 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) → ∃𝑖 ∈ 𝐼 ∃𝑒 ∈ 𝐸 𝑎 = (𝑖(.r‘𝑅)𝑒)) |
32 | 27, 31 | r19.29vva 3266 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) → 𝑎 ∈ 𝐼) |
33 | 32 | ex 413 | . 2 ⊢ (𝜑 → (𝑎 ∈ (𝐼 × 𝐸) → 𝑎 ∈ 𝐼)) |
34 | 33 | ssrdv 3927 | 1 ⊢ (𝜑 → (𝐼 × 𝐸) ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 LSSumclsm 19239 mulGrpcmgp 19720 Ringcrg 19783 CRingccrg 19784 LIdealclidl 20432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-lsm 19241 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-subrg 20022 df-lmod 20125 df-lss 20194 df-sra 20434 df-rgmod 20435 df-lidl 20436 |
This theorem is referenced by: idlsrgmulrss1 31656 |
Copyright terms: Public domain | W3C validator |