Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringlsmss1 | Structured version Visualization version GIF version |
Description: The product of an ideal 𝐼 of a commutative ring 𝑅 with some set E is a subset of the ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.) |
Ref | Expression |
---|---|
ringlsmss.1 | ⊢ 𝐵 = (Base‘𝑅) |
ringlsmss.2 | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringlsmss.3 | ⊢ × = (LSSum‘𝐺) |
ringlsmss1.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
ringlsmss1.2 | ⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
ringlsmss1.3 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
Ref | Expression |
---|---|
ringlsmss1 | ⊢ (𝜑 → (𝐼 × 𝐸) ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) ∧ 𝑎 = (𝑖(.r‘𝑅)𝑒)) → 𝑎 = (𝑖(.r‘𝑅)𝑒)) | |
2 | ringlsmss1.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
3 | 2 | ad2antrr 723 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑅 ∈ CRing) |
4 | ringlsmss1.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ⊆ 𝐵) | |
5 | 4 | sselda 3926 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐵) |
6 | 5 | adantlr 712 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐵) |
7 | ringlsmss1.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
8 | ringlsmss.1 | . . . . . . . . . . . . 13 ⊢ 𝐵 = (Base‘𝑅) | |
9 | eqid 2740 | . . . . . . . . . . . . 13 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
10 | 8, 9 | lidlss 20479 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ 𝐵) |
11 | 7, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
12 | 11 | sselda 3926 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐵) |
13 | 12 | adantr 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑖 ∈ 𝐵) |
14 | eqid 2740 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
15 | 8, 14 | crngcom 19799 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑒 ∈ 𝐵 ∧ 𝑖 ∈ 𝐵) → (𝑒(.r‘𝑅)𝑖) = (𝑖(.r‘𝑅)𝑒)) |
16 | 3, 6, 13, 15 | syl3anc 1370 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑒(.r‘𝑅)𝑖) = (𝑖(.r‘𝑅)𝑒)) |
17 | crngring 19793 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
18 | 2, 17 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ Ring) |
19 | 18 | ad2antrr 723 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑅 ∈ Ring) |
20 | 7 | ad2antrr 723 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝐼 ∈ (LIdeal‘𝑅)) |
21 | simplr 766 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → 𝑖 ∈ 𝐼) | |
22 | 9, 8, 14 | lidlmcl 20486 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼)) → (𝑒(.r‘𝑅)𝑖) ∈ 𝐼) |
23 | 19, 20, 6, 21, 22 | syl22anc 836 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑒(.r‘𝑅)𝑖) ∈ 𝐼) |
24 | 16, 23 | eqeltrrd 2842 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑖(.r‘𝑅)𝑒) ∈ 𝐼) |
25 | 24 | adantllr 716 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) → (𝑖(.r‘𝑅)𝑒) ∈ 𝐼) |
26 | 25 | adantr 481 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) ∧ 𝑎 = (𝑖(.r‘𝑅)𝑒)) → (𝑖(.r‘𝑅)𝑒) ∈ 𝐼) |
27 | 1, 26 | eqeltrd 2841 | . . . 4 ⊢ (((((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑒 ∈ 𝐸) ∧ 𝑎 = (𝑖(.r‘𝑅)𝑒)) → 𝑎 ∈ 𝐼) |
28 | ringlsmss.2 | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝑅) | |
29 | ringlsmss.3 | . . . . . 6 ⊢ × = (LSSum‘𝐺) | |
30 | 8, 14, 28, 29, 11, 4 | elringlsm 31577 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ (𝐼 × 𝐸) ↔ ∃𝑖 ∈ 𝐼 ∃𝑒 ∈ 𝐸 𝑎 = (𝑖(.r‘𝑅)𝑒))) |
31 | 30 | biimpa 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) → ∃𝑖 ∈ 𝐼 ∃𝑒 ∈ 𝐸 𝑎 = (𝑖(.r‘𝑅)𝑒)) |
32 | 27, 31 | r19.29vva 3266 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝐼 × 𝐸)) → 𝑎 ∈ 𝐼) |
33 | 32 | ex 413 | . 2 ⊢ (𝜑 → (𝑎 ∈ (𝐼 × 𝐸) → 𝑎 ∈ 𝐼)) |
34 | 33 | ssrdv 3932 | 1 ⊢ (𝜑 → (𝐼 × 𝐸) ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 ⊆ wss 3892 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 .rcmulr 16961 LSSumclsm 19237 mulGrpcmgp 19718 Ringcrg 19781 CRingccrg 19782 LIdealclidl 20430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-ip 16978 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-sbg 18580 df-subg 18750 df-lsm 19239 df-cmn 19386 df-mgp 19719 df-ur 19736 df-ring 19783 df-cring 19784 df-subrg 20020 df-lmod 20123 df-lss 20192 df-sra 20432 df-rgmod 20433 df-lidl 20434 |
This theorem is referenced by: idlsrgmulrss1 31652 |
Copyright terms: Public domain | W3C validator |