MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atansssdm Structured version   Visualization version   GIF version

Theorem atansssdm 26081
Description: The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
atansssdm 𝑆 ⊆ dom arctan
Distinct variable group:   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem atansssdm
StepHypRef Expression
1 atansopn.s . 2 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
2 rabss 4010 . . 3 ({𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⊆ dom arctan ↔ ∀𝑦 ∈ ℂ ((1 + (𝑦↑2)) ∈ 𝐷𝑦 ∈ dom arctan))
3 simpl 483 . . . . 5 ((𝑦 ∈ ℂ ∧ (1 + (𝑦↑2)) ∈ 𝐷) → 𝑦 ∈ ℂ)
4 atansopn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmn0 25793 . . . . . 6 ((1 + (𝑦↑2)) ∈ 𝐷 → (1 + (𝑦↑2)) ≠ 0)
65adantl 482 . . . . 5 ((𝑦 ∈ ℂ ∧ (1 + (𝑦↑2)) ∈ 𝐷) → (1 + (𝑦↑2)) ≠ 0)
7 atandm4 26027 . . . . 5 (𝑦 ∈ dom arctan ↔ (𝑦 ∈ ℂ ∧ (1 + (𝑦↑2)) ≠ 0))
83, 6, 7sylanbrc 583 . . . 4 ((𝑦 ∈ ℂ ∧ (1 + (𝑦↑2)) ∈ 𝐷) → 𝑦 ∈ dom arctan)
98ex 413 . . 3 (𝑦 ∈ ℂ → ((1 + (𝑦↑2)) ∈ 𝐷𝑦 ∈ dom arctan))
102, 9mprgbir 3081 . 2 {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⊆ dom arctan
111, 10eqsstri 3960 1 𝑆 ⊆ dom arctan
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  {crab 3070  cdif 3889  wss 3892  dom cdm 5590  (class class class)co 7271  cc 10870  0cc0 10872  1c1 10873   + caddc 10875  -∞cmnf 11008  2c2 12028  (,]cioc 13079  cexp 13780  arctancatan 26012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-ioc 13083  df-seq 13720  df-exp 13781  df-atan 26015
This theorem is referenced by:  dvatan  26083  atancn  26084
  Copyright terms: Public domain W3C validator