| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > atansssdm | Structured version Visualization version GIF version | ||
| Description: The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| atansopn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| atansopn.s | ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
| Ref | Expression |
|---|---|
| atansssdm | ⊢ 𝑆 ⊆ dom arctan |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.s | . 2 ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} | |
| 2 | rabss 4031 | . . 3 ⊢ ({𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⊆ dom arctan ↔ ∀𝑦 ∈ ℂ ((1 + (𝑦↑2)) ∈ 𝐷 → 𝑦 ∈ dom arctan)) | |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝑦 ∈ ℂ ∧ (1 + (𝑦↑2)) ∈ 𝐷) → 𝑦 ∈ ℂ) | |
| 4 | atansopn.d | . . . . . . 7 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 5 | 4 | logdmn0 26525 | . . . . . 6 ⊢ ((1 + (𝑦↑2)) ∈ 𝐷 → (1 + (𝑦↑2)) ≠ 0) |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝑦 ∈ ℂ ∧ (1 + (𝑦↑2)) ∈ 𝐷) → (1 + (𝑦↑2)) ≠ 0) |
| 7 | atandm4 26765 | . . . . 5 ⊢ (𝑦 ∈ dom arctan ↔ (𝑦 ∈ ℂ ∧ (1 + (𝑦↑2)) ≠ 0)) | |
| 8 | 3, 6, 7 | sylanbrc 583 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ (1 + (𝑦↑2)) ∈ 𝐷) → 𝑦 ∈ dom arctan) |
| 9 | 8 | ex 412 | . . 3 ⊢ (𝑦 ∈ ℂ → ((1 + (𝑦↑2)) ∈ 𝐷 → 𝑦 ∈ dom arctan)) |
| 10 | 2, 9 | mprgbir 3051 | . 2 ⊢ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⊆ dom arctan |
| 11 | 1, 10 | eqsstri 3990 | 1 ⊢ 𝑆 ⊆ dom arctan |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 ∖ cdif 3908 ⊆ wss 3911 dom cdm 5631 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 -∞cmnf 11182 2c2 12217 (,]cioc 13283 ↑cexp 14002 arctancatan 26750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ioc 13287 df-seq 13943 df-exp 14003 df-atan 26753 |
| This theorem is referenced by: dvatan 26821 atancn 26822 |
| Copyright terms: Public domain | W3C validator |