![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leftf | Structured version Visualization version GIF version |
Description: The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
leftf | β’ L : No βΆπ« No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-left 27580 | . 2 β’ L = (π₯ β No β¦ {π¦ β ( O β( bday βπ₯)) β£ π¦ <s π₯}) | |
2 | bdayelon 27512 | . . . . . . . 8 β’ ( bday βπ₯) β On | |
3 | oldf 27587 | . . . . . . . . 9 β’ O :OnβΆπ« No | |
4 | 3 | ffvelcdmi 7086 | . . . . . . . 8 β’ (( bday βπ₯) β On β ( O β( bday βπ₯)) β π« No ) |
5 | 2, 4 | mp1i 13 | . . . . . . 7 β’ (π₯ β No β ( O β( bday βπ₯)) β π« No ) |
6 | 5 | elpwid 4612 | . . . . . 6 β’ (π₯ β No β ( O β( bday βπ₯)) β No ) |
7 | 6 | sselda 3983 | . . . . 5 β’ ((π₯ β No β§ π¦ β ( O β( bday βπ₯))) β π¦ β No ) |
8 | 7 | a1d 25 | . . . 4 β’ ((π₯ β No β§ π¦ β ( O β( bday βπ₯))) β (π¦ <s π₯ β π¦ β No )) |
9 | 8 | ralrimiva 3144 | . . 3 β’ (π₯ β No β βπ¦ β ( O β( bday βπ₯))(π¦ <s π₯ β π¦ β No )) |
10 | fvex 6905 | . . . . . 6 β’ ( O β( bday βπ₯)) β V | |
11 | 10 | rabex 5333 | . . . . 5 β’ {π¦ β ( O β( bday βπ₯)) β£ π¦ <s π₯} β V |
12 | 11 | elpw 4607 | . . . 4 β’ ({π¦ β ( O β( bday βπ₯)) β£ π¦ <s π₯} β π« No β {π¦ β ( O β( bday βπ₯)) β£ π¦ <s π₯} β No ) |
13 | rabss 4070 | . . . 4 β’ ({π¦ β ( O β( bday βπ₯)) β£ π¦ <s π₯} β No β βπ¦ β ( O β( bday βπ₯))(π¦ <s π₯ β π¦ β No )) | |
14 | 12, 13 | bitri 274 | . . 3 β’ ({π¦ β ( O β( bday βπ₯)) β£ π¦ <s π₯} β π« No β βπ¦ β ( O β( bday βπ₯))(π¦ <s π₯ β π¦ β No )) |
15 | 9, 14 | sylibr 233 | . 2 β’ (π₯ β No β {π¦ β ( O β( bday βπ₯)) β£ π¦ <s π₯} β π« No ) |
16 | 1, 15 | fmpti 7114 | 1 β’ L : No βΆπ« No |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β wcel 2104 βwral 3059 {crab 3430 β wss 3949 π« cpw 4603 class class class wbr 5149 Oncon0 6365 βΆwf 6540 βcfv 6544 No csur 27377 <s cslt 27378 bday cbday 27379 O cold 27573 L cleft 27575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-1o 8470 df-2o 8471 df-no 27380 df-slt 27381 df-bday 27382 df-sslt 27517 df-scut 27519 df-made 27577 df-old 27578 df-left 27580 |
This theorem is referenced by: ssltleft 27600 lltropt 27602 lrold 27626 |
Copyright terms: Public domain | W3C validator |