![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leftf | Structured version Visualization version GIF version |
Description: The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
leftf | ⊢ L : No ⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-left 27868 | . 2 ⊢ L = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥}) | |
2 | bdayelon 27800 | . . . . . . . 8 ⊢ ( bday ‘𝑥) ∈ On | |
3 | oldf 27875 | . . . . . . . . 9 ⊢ O :On⟶𝒫 No | |
4 | 3 | ffvelcdmi 7086 | . . . . . . . 8 ⊢ (( bday ‘𝑥) ∈ On → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
5 | 2, 4 | mp1i 13 | . . . . . . 7 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
6 | 5 | elpwid 4606 | . . . . . 6 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ⊆ No ) |
7 | 6 | sselda 3978 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → 𝑦 ∈ No ) |
8 | 7 | a1d 25 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → (𝑦 <s 𝑥 → 𝑦 ∈ No )) |
9 | 8 | ralrimiva 3136 | . . 3 ⊢ (𝑥 ∈ No → ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑦 <s 𝑥 → 𝑦 ∈ No )) |
10 | fvex 6903 | . . . . . 6 ⊢ ( O ‘( bday ‘𝑥)) ∈ V | |
11 | 10 | rabex 5329 | . . . . 5 ⊢ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ V |
12 | 11 | elpw 4601 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No ) |
13 | rabss 4065 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑦 <s 𝑥 → 𝑦 ∈ No )) | |
14 | 12, 13 | bitri 274 | . . 3 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑦 <s 𝑥 → 𝑦 ∈ No )) |
15 | 9, 14 | sylibr 233 | . 2 ⊢ (𝑥 ∈ No → {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ) |
16 | 1, 15 | fmpti 7115 | 1 ⊢ L : No ⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 ∀wral 3051 {crab 3419 ⊆ wss 3946 𝒫 cpw 4597 class class class wbr 5143 Oncon0 6365 ⟶wf 6539 ‘cfv 6543 No csur 27663 <s cslt 27664 bday cbday 27665 O cold 27861 L cleft 27863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-no 27666 df-slt 27667 df-bday 27668 df-sslt 27805 df-scut 27807 df-made 27865 df-old 27866 df-left 27868 |
This theorem is referenced by: ssltleft 27888 lltropt 27890 lrold 27914 |
Copyright terms: Public domain | W3C validator |