MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leftf Structured version   Visualization version   GIF version

Theorem leftf 27883
Description: The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
leftf L : No ⟶𝒫 No

Proof of Theorem leftf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-left 27868 . 2 L = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥})
2 bdayelon 27800 . . . . . . . 8 ( bday 𝑥) ∈ On
3 oldf 27875 . . . . . . . . 9 O :On⟶𝒫 No
43ffvelcdmi 7086 . . . . . . . 8 (( bday 𝑥) ∈ On → ( O ‘( bday 𝑥)) ∈ 𝒫 No )
52, 4mp1i 13 . . . . . . 7 (𝑥 No → ( O ‘( bday 𝑥)) ∈ 𝒫 No )
65elpwid 4606 . . . . . 6 (𝑥 No → ( O ‘( bday 𝑥)) ⊆ No )
76sselda 3978 . . . . 5 ((𝑥 No 𝑦 ∈ ( O ‘( bday 𝑥))) → 𝑦 No )
87a1d 25 . . . 4 ((𝑥 No 𝑦 ∈ ( O ‘( bday 𝑥))) → (𝑦 <s 𝑥𝑦 No ))
98ralrimiva 3136 . . 3 (𝑥 No → ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑦 <s 𝑥𝑦 No ))
10 fvex 6903 . . . . . 6 ( O ‘( bday 𝑥)) ∈ V
1110rabex 5329 . . . . 5 {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ V
1211elpw 4601 . . . 4 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No )
13 rabss 4065 . . . 4 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑦 <s 𝑥𝑦 No ))
1412, 13bitri 274 . . 3 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑦 <s 𝑥𝑦 No ))
159, 14sylibr 233 . 2 (𝑥 No → {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No )
161, 15fmpti 7115 1 L : No ⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  wral 3051  {crab 3419  wss 3946  𝒫 cpw 4597   class class class wbr 5143  Oncon0 6365  wf 6539  cfv 6543   No csur 27663   <s cslt 27664   bday cbday 27665   O cold 27861   L cleft 27863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-no 27666  df-slt 27667  df-bday 27668  df-sslt 27805  df-scut 27807  df-made 27865  df-old 27866  df-left 27868
This theorem is referenced by:  ssltleft  27888  lltropt  27890  lrold  27914
  Copyright terms: Public domain W3C validator