| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leftf | Structured version Visualization version GIF version | ||
| Description: The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| leftf | ⊢ L : No ⟶𝒫 No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-left 27810 | . 2 ⊢ L = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥}) | |
| 2 | bdayelon 27740 | . . . . . . . 8 ⊢ ( bday ‘𝑥) ∈ On | |
| 3 | oldf 27817 | . . . . . . . . 9 ⊢ O :On⟶𝒫 No | |
| 4 | 3 | ffvelcdmi 7073 | . . . . . . . 8 ⊢ (( bday ‘𝑥) ∈ On → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
| 5 | 2, 4 | mp1i 13 | . . . . . . 7 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
| 6 | 5 | elpwid 4584 | . . . . . 6 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ⊆ No ) |
| 7 | 6 | sselda 3958 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → 𝑦 ∈ No ) |
| 8 | 7 | a1d 25 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → (𝑦 <s 𝑥 → 𝑦 ∈ No )) |
| 9 | 8 | ralrimiva 3132 | . . 3 ⊢ (𝑥 ∈ No → ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑦 <s 𝑥 → 𝑦 ∈ No )) |
| 10 | fvex 6889 | . . . . . 6 ⊢ ( O ‘( bday ‘𝑥)) ∈ V | |
| 11 | 10 | rabex 5309 | . . . . 5 ⊢ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ V |
| 12 | 11 | elpw 4579 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No ) |
| 13 | rabss 4047 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑦 <s 𝑥 → 𝑦 ∈ No )) | |
| 14 | 12, 13 | bitri 275 | . . 3 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑦 <s 𝑥 → 𝑦 ∈ No )) |
| 15 | 9, 14 | sylibr 234 | . 2 ⊢ (𝑥 ∈ No → {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ) |
| 16 | 1, 15 | fmpti 7102 | 1 ⊢ L : No ⟶𝒫 No |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 Oncon0 6352 ⟶wf 6527 ‘cfv 6531 No csur 27603 <s cslt 27604 bday cbday 27605 O cold 27803 L cleft 27805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 df-bday 27608 df-sslt 27745 df-scut 27747 df-made 27807 df-old 27808 df-left 27810 |
| This theorem is referenced by: ssltleft 27834 lltropt 27836 lrold 27860 |
| Copyright terms: Public domain | W3C validator |