MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leftf Structured version   Visualization version   GIF version

Theorem leftf 27829
Description: The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
leftf L : No ⟶𝒫 No

Proof of Theorem leftf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-left 27810 . 2 L = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥})
2 bdayelon 27740 . . . . . . . 8 ( bday 𝑥) ∈ On
3 oldf 27817 . . . . . . . . 9 O :On⟶𝒫 No
43ffvelcdmi 7073 . . . . . . . 8 (( bday 𝑥) ∈ On → ( O ‘( bday 𝑥)) ∈ 𝒫 No )
52, 4mp1i 13 . . . . . . 7 (𝑥 No → ( O ‘( bday 𝑥)) ∈ 𝒫 No )
65elpwid 4584 . . . . . 6 (𝑥 No → ( O ‘( bday 𝑥)) ⊆ No )
76sselda 3958 . . . . 5 ((𝑥 No 𝑦 ∈ ( O ‘( bday 𝑥))) → 𝑦 No )
87a1d 25 . . . 4 ((𝑥 No 𝑦 ∈ ( O ‘( bday 𝑥))) → (𝑦 <s 𝑥𝑦 No ))
98ralrimiva 3132 . . 3 (𝑥 No → ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑦 <s 𝑥𝑦 No ))
10 fvex 6889 . . . . . 6 ( O ‘( bday 𝑥)) ∈ V
1110rabex 5309 . . . . 5 {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ V
1211elpw 4579 . . . 4 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No )
13 rabss 4047 . . . 4 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑦 <s 𝑥𝑦 No ))
1412, 13bitri 275 . . 3 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑦 <s 𝑥𝑦 No ))
159, 14sylibr 234 . 2 (𝑥 No → {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No )
161, 15fmpti 7102 1 L : No ⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3051  {crab 3415  wss 3926  𝒫 cpw 4575   class class class wbr 5119  Oncon0 6352  wf 6527  cfv 6531   No csur 27603   <s cslt 27604   bday cbday 27605   O cold 27803   L cleft 27805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745  df-scut 27747  df-made 27807  df-old 27808  df-left 27810
This theorem is referenced by:  ssltleft  27834  lltropt  27836  lrold  27860
  Copyright terms: Public domain W3C validator