MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leftf Structured version   Visualization version   GIF version

Theorem leftf 27922
Description: The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
leftf L : No ⟶𝒫 No

Proof of Theorem leftf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-left 27907 . 2 L = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥})
2 bdayelon 27839 . . . . . . . 8 ( bday 𝑥) ∈ On
3 oldf 27914 . . . . . . . . 9 O :On⟶𝒫 No
43ffvelcdmi 7117 . . . . . . . 8 (( bday 𝑥) ∈ On → ( O ‘( bday 𝑥)) ∈ 𝒫 No )
52, 4mp1i 13 . . . . . . 7 (𝑥 No → ( O ‘( bday 𝑥)) ∈ 𝒫 No )
65elpwid 4631 . . . . . 6 (𝑥 No → ( O ‘( bday 𝑥)) ⊆ No )
76sselda 4008 . . . . 5 ((𝑥 No 𝑦 ∈ ( O ‘( bday 𝑥))) → 𝑦 No )
87a1d 25 . . . 4 ((𝑥 No 𝑦 ∈ ( O ‘( bday 𝑥))) → (𝑦 <s 𝑥𝑦 No ))
98ralrimiva 3152 . . 3 (𝑥 No → ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑦 <s 𝑥𝑦 No ))
10 fvex 6933 . . . . . 6 ( O ‘( bday 𝑥)) ∈ V
1110rabex 5357 . . . . 5 {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ V
1211elpw 4626 . . . 4 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No )
13 rabss 4095 . . . 4 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑦 <s 𝑥𝑦 No ))
1412, 13bitri 275 . . 3 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑦 <s 𝑥𝑦 No ))
159, 14sylibr 234 . 2 (𝑥 No → {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No )
161, 15fmpti 7146 1 L : No ⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  {crab 3443  wss 3976  𝒫 cpw 4622   class class class wbr 5166  Oncon0 6395  wf 6569  cfv 6573   No csur 27702   <s cslt 27703   bday cbday 27704   O cold 27900   L cleft 27902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-made 27904  df-old 27905  df-left 27907
This theorem is referenced by:  ssltleft  27927  lltropt  27929  lrold  27953
  Copyright terms: Public domain W3C validator