| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leftf | Structured version Visualization version GIF version | ||
| Description: The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| leftf | ⊢ L : No ⟶𝒫 No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-left 27792 | . 2 ⊢ L = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥}) | |
| 2 | bdayelon 27716 | . . . . . . . 8 ⊢ ( bday ‘𝑥) ∈ On | |
| 3 | oldf 27799 | . . . . . . . . 9 ⊢ O :On⟶𝒫 No | |
| 4 | 3 | ffvelcdmi 7022 | . . . . . . . 8 ⊢ (( bday ‘𝑥) ∈ On → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
| 5 | 2, 4 | mp1i 13 | . . . . . . 7 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
| 6 | 5 | elpwid 4558 | . . . . . 6 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ⊆ No ) |
| 7 | 6 | sselda 3930 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → 𝑦 ∈ No ) |
| 8 | 7 | a1d 25 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → (𝑦 <s 𝑥 → 𝑦 ∈ No )) |
| 9 | 8 | ralrimiva 3125 | . . 3 ⊢ (𝑥 ∈ No → ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑦 <s 𝑥 → 𝑦 ∈ No )) |
| 10 | fvex 6841 | . . . . . 6 ⊢ ( O ‘( bday ‘𝑥)) ∈ V | |
| 11 | 10 | rabex 5279 | . . . . 5 ⊢ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ V |
| 12 | 11 | elpw 4553 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No ) |
| 13 | rabss 4019 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑦 <s 𝑥 → 𝑦 ∈ No )) | |
| 14 | 12, 13 | bitri 275 | . . 3 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑦 <s 𝑥 → 𝑦 ∈ No )) |
| 15 | 9, 14 | sylibr 234 | . 2 ⊢ (𝑥 ∈ No → {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥} ∈ 𝒫 No ) |
| 16 | 1, 15 | fmpti 7051 | 1 ⊢ L : No ⟶𝒫 No |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 𝒫 cpw 4549 class class class wbr 5093 Oncon0 6311 ⟶wf 6482 ‘cfv 6486 No csur 27579 <s cslt 27580 bday cbday 27581 O cold 27785 L cleft 27787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-no 27582 df-slt 27583 df-bday 27584 df-sslt 27722 df-scut 27724 df-made 27789 df-old 27790 df-left 27792 |
| This theorem is referenced by: ssltleft 27816 lltropt 27818 lrold 27843 |
| Copyright terms: Public domain | W3C validator |