![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsssfz1 | Structured version Visualization version GIF version |
Description: The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
dvdsssfz1 | ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12576 | . . . . 5 ⊢ (𝑝 ∈ ℕ → 𝑝 ∈ ℤ) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ) | |
3 | dvdsle 16250 | . . . . 5 ⊢ ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴)) | |
4 | 1, 2, 3 | syl2anr 598 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴)) |
5 | ibar 530 | . . . . . 6 ⊢ (𝑝 ∈ ℕ → (𝑝 ≤ 𝐴 ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴))) | |
6 | 5 | adantl 483 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ≤ 𝐴 ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴))) |
7 | nnz 12576 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
8 | 7 | adantr 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → 𝐴 ∈ ℤ) |
9 | fznn 13566 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (𝑝 ∈ (1...𝐴) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴))) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ∈ (1...𝐴) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴))) |
11 | 6, 10 | bitr4d 282 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ≤ 𝐴 ↔ 𝑝 ∈ (1...𝐴))) |
12 | 4, 11 | sylibd 238 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ∥ 𝐴 → 𝑝 ∈ (1...𝐴))) |
13 | 12 | ralrimiva 3147 | . 2 ⊢ (𝐴 ∈ ℕ → ∀𝑝 ∈ ℕ (𝑝 ∥ 𝐴 → 𝑝 ∈ (1...𝐴))) |
14 | rabss 4069 | . 2 ⊢ ({𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴) ↔ ∀𝑝 ∈ ℕ (𝑝 ∥ 𝐴 → 𝑝 ∈ (1...𝐴))) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 {crab 3433 ⊆ wss 3948 class class class wbr 5148 (class class class)co 7406 1c1 11108 ≤ cle 11246 ℕcn 12209 ℤcz 12555 ...cfz 13481 ∥ cdvds 16194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-dvds 16195 |
This theorem is referenced by: phisum 16720 prmdvdsfi 26601 0sgm 26638 sgmf 26639 sgmnncl 26641 mumul 26675 sqff1o 26676 fsumdvdsdiag 26678 fsumdvdscom 26679 dvdsflsumcom 26682 musum 26685 musumsum 26686 muinv 26687 fsumdvdsmul 26689 vmasum 26709 perfectlem2 26723 dchrvmasumlem1 26988 dchrisum0ff 27000 dchrisum0 27013 vmalogdivsum2 27031 logsqvma 27035 logsqvma2 27036 selberg 27041 selberg34r 27064 pntsval2 27069 pntrlog2bndlem1 27070 perfectALTVlem2 46377 |
Copyright terms: Public domain | W3C validator |