Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsssfz1 | Structured version Visualization version GIF version |
Description: The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
dvdsssfz1 | ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12455 | . . . . 5 ⊢ (𝑝 ∈ ℕ → 𝑝 ∈ ℤ) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ) | |
3 | dvdsle 16126 | . . . . 5 ⊢ ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴)) | |
4 | 1, 2, 3 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴)) |
5 | ibar 529 | . . . . . 6 ⊢ (𝑝 ∈ ℕ → (𝑝 ≤ 𝐴 ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴))) | |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ≤ 𝐴 ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴))) |
7 | nnz 12455 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
8 | 7 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → 𝐴 ∈ ℤ) |
9 | fznn 13437 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (𝑝 ∈ (1...𝐴) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴))) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ∈ (1...𝐴) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴))) |
11 | 6, 10 | bitr4d 281 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ≤ 𝐴 ↔ 𝑝 ∈ (1...𝐴))) |
12 | 4, 11 | sylibd 238 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑝 ∥ 𝐴 → 𝑝 ∈ (1...𝐴))) |
13 | 12 | ralrimiva 3141 | . 2 ⊢ (𝐴 ∈ ℕ → ∀𝑝 ∈ ℕ (𝑝 ∥ 𝐴 → 𝑝 ∈ (1...𝐴))) |
14 | rabss 4027 | . 2 ⊢ ({𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴) ↔ ∀𝑝 ∈ ℕ (𝑝 ∥ 𝐴 → 𝑝 ∈ (1...𝐴))) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3062 {crab 3405 ⊆ wss 3908 class class class wbr 5103 (class class class)co 7349 1c1 10985 ≤ cle 11123 ℕcn 12086 ℤcz 12432 ...cfz 13352 ∥ cdvds 16070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7793 df-1st 7911 df-2nd 7912 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-er 8581 df-en 8817 df-dom 8818 df-sdom 8819 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-nn 12087 df-n0 12347 df-z 12433 df-uz 12696 df-fz 13353 df-dvds 16071 |
This theorem is referenced by: phisum 16596 prmdvdsfi 26378 0sgm 26415 sgmf 26416 sgmnncl 26418 mumul 26452 sqff1o 26453 fsumdvdsdiag 26455 fsumdvdscom 26456 dvdsflsumcom 26459 musum 26462 musumsum 26463 muinv 26464 fsumdvdsmul 26466 vmasum 26486 perfectlem2 26500 dchrvmasumlem1 26765 dchrisum0ff 26777 dchrisum0 26790 vmalogdivsum2 26808 logsqvma 26812 logsqvma2 26813 selberg 26818 selberg34r 26841 pntsval2 26846 pntrlog2bndlem1 26847 perfectALTVlem2 45663 |
Copyright terms: Public domain | W3C validator |