![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnubfi | Structured version Visualization version GIF version |
Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.) |
Ref | Expression |
---|---|
nnubfi | ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 13937 | . 2 ⊢ (0...𝐵) ∈ Fin | |
2 | ssel2 3978 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ) | |
3 | nnnn0 12479 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
5 | 4 | adantlr 714 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
6 | 5 | adantr 482 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ ℕ0) |
7 | nnnn0 12479 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0) | |
8 | 7 | ad3antlr 730 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝐵 ∈ ℕ0) |
9 | nnre 12219 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
10 | 2, 9 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
11 | 10 | adantlr 714 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
12 | nnre 12219 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
13 | 12 | ad2antlr 726 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
14 | ltle 11302 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) | |
15 | 11, 13, 14 | syl2anc 585 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) |
16 | 15 | imp 408 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ≤ 𝐵) |
17 | elfz2nn0 13592 | . . . . . 6 ⊢ (𝑥 ∈ (0...𝐵) ↔ (𝑥 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑥 ≤ 𝐵)) | |
18 | 6, 8, 16, 17 | syl3anbrc 1344 | . . . . 5 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ (0...𝐵)) |
19 | 18 | ex 414 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
20 | 19 | ralrimiva 3147 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
21 | rabss 4070 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) | |
22 | 20, 21 | sylibr 233 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) |
23 | ssfi 9173 | . 2 ⊢ (((0...𝐵) ∈ Fin ∧ {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) | |
24 | 1, 22, 23 | sylancr 588 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 {crab 3433 ⊆ wss 3949 class class class wbr 5149 (class class class)co 7409 Fincfn 8939 ℝcr 11109 0cc0 11110 < clt 11248 ≤ cle 11249 ℕcn 12212 ℕ0cn0 12472 ...cfz 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |