![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnubfi | Structured version Visualization version GIF version |
Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.) |
Ref | Expression |
---|---|
nnubfi | ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 14010 | . 2 ⊢ (0...𝐵) ∈ Fin | |
2 | ssel2 3990 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ) | |
3 | nnnn0 12531 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
5 | 4 | adantlr 715 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ ℕ0) |
7 | nnnn0 12531 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0) | |
8 | 7 | ad3antlr 731 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝐵 ∈ ℕ0) |
9 | nnre 12271 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
10 | 2, 9 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
11 | 10 | adantlr 715 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
12 | nnre 12271 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
13 | 12 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
14 | ltle 11347 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) | |
15 | 11, 13, 14 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) |
16 | 15 | imp 406 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ≤ 𝐵) |
17 | elfz2nn0 13655 | . . . . . 6 ⊢ (𝑥 ∈ (0...𝐵) ↔ (𝑥 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑥 ≤ 𝐵)) | |
18 | 6, 8, 16, 17 | syl3anbrc 1342 | . . . . 5 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ (0...𝐵)) |
19 | 18 | ex 412 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
20 | 19 | ralrimiva 3144 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
21 | rabss 4082 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) | |
22 | 20, 21 | sylibr 234 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) |
23 | ssfi 9212 | . 2 ⊢ (((0...𝐵) ∈ Fin ∧ {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) | |
24 | 1, 22, 23 | sylancr 587 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 {crab 3433 ⊆ wss 3963 class class class wbr 5148 (class class class)co 7431 Fincfn 8984 ℝcr 11152 0cc0 11153 < clt 11293 ≤ cle 11294 ℕcn 12264 ℕ0cn0 12524 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |