Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnubfi | Structured version Visualization version GIF version |
Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.) |
Ref | Expression |
---|---|
nnubfi | ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 13690 | . 2 ⊢ (0...𝐵) ∈ Fin | |
2 | ssel2 3921 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ) | |
3 | nnnn0 12240 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
5 | 4 | adantlr 712 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ ℕ0) |
7 | nnnn0 12240 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0) | |
8 | 7 | ad3antlr 728 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝐵 ∈ ℕ0) |
9 | nnre 11980 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
10 | 2, 9 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
11 | 10 | adantlr 712 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
12 | nnre 11980 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
13 | 12 | ad2antlr 724 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
14 | ltle 11064 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) | |
15 | 11, 13, 14 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) |
16 | 15 | imp 407 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ≤ 𝐵) |
17 | elfz2nn0 13346 | . . . . . 6 ⊢ (𝑥 ∈ (0...𝐵) ↔ (𝑥 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑥 ≤ 𝐵)) | |
18 | 6, 8, 16, 17 | syl3anbrc 1342 | . . . . 5 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ (0...𝐵)) |
19 | 18 | ex 413 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
20 | 19 | ralrimiva 3110 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
21 | rabss 4010 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) | |
22 | 20, 21 | sylibr 233 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) |
23 | ssfi 8938 | . 2 ⊢ (((0...𝐵) ∈ Fin ∧ {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) | |
24 | 1, 22, 23 | sylancr 587 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 {crab 3070 ⊆ wss 3892 class class class wbr 5079 (class class class)co 7271 Fincfn 8716 ℝcr 10871 0cc0 10872 < clt 11010 ≤ cle 11011 ℕcn 11973 ℕ0cn0 12233 ...cfz 13238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |