Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnubfi Structured version   Visualization version   GIF version

Theorem nnubfi 35835
Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
nnubfi ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝑥 < 𝐵} ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnubfi
StepHypRef Expression
1 fzfi 13620 . 2 (0...𝐵) ∈ Fin
2 ssel2 3912 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑥𝐴) → 𝑥 ∈ ℕ)
3 nnnn0 12170 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
54adantlr 711 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
65adantr 480 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ ℕ0)
7 nnnn0 12170 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
87ad3antlr 727 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝐵 ∈ ℕ0)
9 nnre 11910 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
102, 9syl 17 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1110adantlr 711 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
12 nnre 11910 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1312ad2antlr 723 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
14 ltle 10994 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 < 𝐵𝑥𝐵))
1511, 13, 14syl2anc 583 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → (𝑥 < 𝐵𝑥𝐵))
1615imp 406 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝑥𝐵)
17 elfz2nn0 13276 . . . . . 6 (𝑥 ∈ (0...𝐵) ↔ (𝑥 ∈ ℕ0𝐵 ∈ ℕ0𝑥𝐵))
186, 8, 16, 17syl3anbrc 1341 . . . . 5 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ (0...𝐵))
1918ex 412 . . . 4 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → (𝑥 < 𝐵𝑥 ∈ (0...𝐵)))
2019ralrimiva 3107 . . 3 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ∀𝑥𝐴 (𝑥 < 𝐵𝑥 ∈ (0...𝐵)))
21 rabss 4001 . . 3 ({𝑥𝐴𝑥 < 𝐵} ⊆ (0...𝐵) ↔ ∀𝑥𝐴 (𝑥 < 𝐵𝑥 ∈ (0...𝐵)))
2220, 21sylibr 233 . 2 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝑥 < 𝐵} ⊆ (0...𝐵))
23 ssfi 8918 . 2 (((0...𝐵) ∈ Fin ∧ {𝑥𝐴𝑥 < 𝐵} ⊆ (0...𝐵)) → {𝑥𝐴𝑥 < 𝐵} ∈ Fin)
241, 22, 23sylancr 586 1 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝑥 < 𝐵} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063  {crab 3067  wss 3883   class class class wbr 5070  (class class class)co 7255  Fincfn 8691  cr 10801  0cc0 10802   < clt 10940  cle 10941  cn 11903  0cn0 12163  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator