Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnubfi Structured version   Visualization version   GIF version

Theorem nnubfi 35027
Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
nnubfi ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝑥 < 𝐵} ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnubfi
StepHypRef Expression
1 fzfi 13343 . 2 (0...𝐵) ∈ Fin
2 ssel2 3964 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑥𝐴) → 𝑥 ∈ ℕ)
3 nnnn0 11907 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
54adantlr 713 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
65adantr 483 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ ℕ0)
7 nnnn0 11907 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
87ad3antlr 729 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝐵 ∈ ℕ0)
9 nnre 11647 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
102, 9syl 17 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1110adantlr 713 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
12 nnre 11647 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1312ad2antlr 725 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
14 ltle 10731 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 < 𝐵𝑥𝐵))
1511, 13, 14syl2anc 586 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → (𝑥 < 𝐵𝑥𝐵))
1615imp 409 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝑥𝐵)
17 elfz2nn0 13001 . . . . . 6 (𝑥 ∈ (0...𝐵) ↔ (𝑥 ∈ ℕ0𝐵 ∈ ℕ0𝑥𝐵))
186, 8, 16, 17syl3anbrc 1339 . . . . 5 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ (0...𝐵))
1918ex 415 . . . 4 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → (𝑥 < 𝐵𝑥 ∈ (0...𝐵)))
2019ralrimiva 3184 . . 3 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ∀𝑥𝐴 (𝑥 < 𝐵𝑥 ∈ (0...𝐵)))
21 rabss 4050 . . 3 ({𝑥𝐴𝑥 < 𝐵} ⊆ (0...𝐵) ↔ ∀𝑥𝐴 (𝑥 < 𝐵𝑥 ∈ (0...𝐵)))
2220, 21sylibr 236 . 2 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝑥 < 𝐵} ⊆ (0...𝐵))
23 ssfi 8740 . 2 (((0...𝐵) ∈ Fin ∧ {𝑥𝐴𝑥 < 𝐵} ⊆ (0...𝐵)) → {𝑥𝐴𝑥 < 𝐵} ∈ Fin)
241, 22, 23sylancr 589 1 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝑥 < 𝐵} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wral 3140  {crab 3144  wss 3938   class class class wbr 5068  (class class class)co 7158  Fincfn 8511  cr 10538  0cc0 10539   < clt 10677  cle 10678  cn 11640  0cn0 11900  ...cfz 12895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator