Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnubfi Structured version   Visualization version   GIF version

Theorem nnubfi 37779
Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
nnubfi ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝑥 < 𝐵} ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnubfi
StepHypRef Expression
1 fzfi 13995 . 2 (0...𝐵) ∈ Fin
2 ssel2 3958 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑥𝐴) → 𝑥 ∈ ℕ)
3 nnnn0 12513 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
54adantlr 715 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
65adantr 480 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ ℕ0)
7 nnnn0 12513 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
87ad3antlr 731 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝐵 ∈ ℕ0)
9 nnre 12252 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
102, 9syl 17 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1110adantlr 715 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
12 nnre 12252 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1312ad2antlr 727 . . . . . . . 8 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
14 ltle 11328 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 < 𝐵𝑥𝐵))
1511, 13, 14syl2anc 584 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → (𝑥 < 𝐵𝑥𝐵))
1615imp 406 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝑥𝐵)
17 elfz2nn0 13640 . . . . . 6 (𝑥 ∈ (0...𝐵) ↔ (𝑥 ∈ ℕ0𝐵 ∈ ℕ0𝑥𝐵))
186, 8, 16, 17syl3anbrc 1344 . . . . 5 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ (0...𝐵))
1918ex 412 . . . 4 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥𝐴) → (𝑥 < 𝐵𝑥 ∈ (0...𝐵)))
2019ralrimiva 3133 . . 3 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ∀𝑥𝐴 (𝑥 < 𝐵𝑥 ∈ (0...𝐵)))
21 rabss 4052 . . 3 ({𝑥𝐴𝑥 < 𝐵} ⊆ (0...𝐵) ↔ ∀𝑥𝐴 (𝑥 < 𝐵𝑥 ∈ (0...𝐵)))
2220, 21sylibr 234 . 2 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝑥 < 𝐵} ⊆ (0...𝐵))
23 ssfi 9192 . 2 (((0...𝐵) ∈ Fin ∧ {𝑥𝐴𝑥 < 𝐵} ⊆ (0...𝐵)) → {𝑥𝐴𝑥 < 𝐵} ∈ Fin)
241, 22, 23sylancr 587 1 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝑥 < 𝐵} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052  {crab 3420  wss 3931   class class class wbr 5124  (class class class)co 7410  Fincfn 8964  cr 11133  0cc0 11134   < clt 11274  cle 11275  cn 12245  0cn0 12506  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator