![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnubfi | Structured version Visualization version GIF version |
Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.) |
Ref | Expression |
---|---|
nnubfi | ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 13963 | . 2 ⊢ (0...𝐵) ∈ Fin | |
2 | ssel2 3973 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ) | |
3 | nnnn0 12503 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
5 | 4 | adantlr 714 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ ℕ0) |
7 | nnnn0 12503 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0) | |
8 | 7 | ad3antlr 730 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝐵 ∈ ℕ0) |
9 | nnre 12243 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
10 | 2, 9 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
11 | 10 | adantlr 714 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
12 | nnre 12243 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
13 | 12 | ad2antlr 726 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
14 | ltle 11326 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) | |
15 | 11, 13, 14 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) |
16 | 15 | imp 406 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ≤ 𝐵) |
17 | elfz2nn0 13618 | . . . . . 6 ⊢ (𝑥 ∈ (0...𝐵) ↔ (𝑥 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑥 ≤ 𝐵)) | |
18 | 6, 8, 16, 17 | syl3anbrc 1341 | . . . . 5 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ (0...𝐵)) |
19 | 18 | ex 412 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
20 | 19 | ralrimiva 3141 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
21 | rabss 4065 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) | |
22 | 20, 21 | sylibr 233 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) |
23 | ssfi 9191 | . 2 ⊢ (((0...𝐵) ∈ Fin ∧ {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) | |
24 | 1, 22, 23 | sylancr 586 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3056 {crab 3427 ⊆ wss 3944 class class class wbr 5142 (class class class)co 7414 Fincfn 8957 ℝcr 11131 0cc0 11132 < clt 11272 ≤ cle 11273 ℕcn 12236 ℕ0cn0 12496 ...cfz 13510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |