![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnubfi | Structured version Visualization version GIF version |
Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.) |
Ref | Expression |
---|---|
nnubfi | ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 13970 | . 2 ⊢ (0...𝐵) ∈ Fin | |
2 | ssel2 3975 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ) | |
3 | nnnn0 12510 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
5 | 4 | adantlr 714 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ0) |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ ℕ0) |
7 | nnnn0 12510 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0) | |
8 | 7 | ad3antlr 730 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝐵 ∈ ℕ0) |
9 | nnre 12250 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
10 | 2, 9 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
11 | 10 | adantlr 714 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
12 | nnre 12250 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
13 | 12 | ad2antlr 726 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
14 | ltle 11333 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) | |
15 | 11, 13, 14 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ≤ 𝐵)) |
16 | 15 | imp 406 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ≤ 𝐵) |
17 | elfz2nn0 13625 | . . . . . 6 ⊢ (𝑥 ∈ (0...𝐵) ↔ (𝑥 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑥 ≤ 𝐵)) | |
18 | 6, 8, 16, 17 | syl3anbrc 1341 | . . . . 5 ⊢ ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 < 𝐵) → 𝑥 ∈ (0...𝐵)) |
19 | 18 | ex 412 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
20 | 19 | ralrimiva 3143 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) |
21 | rabss 4067 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 < 𝐵 → 𝑥 ∈ (0...𝐵))) | |
22 | 20, 21 | sylibr 233 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) |
23 | ssfi 9198 | . 2 ⊢ (((0...𝐵) ∈ Fin ∧ {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ⊆ (0...𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) | |
24 | 1, 22, 23 | sylancr 586 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3058 {crab 3429 ⊆ wss 3947 class class class wbr 5148 (class class class)co 7420 Fincfn 8964 ℝcr 11138 0cc0 11139 < clt 11279 ≤ cle 11280 ℕcn 12243 ℕ0cn0 12503 ...cfz 13517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |