MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem2 Structured version   Visualization version   GIF version

Theorem ovolshftlem2 24114
Description: Lemma for ovolshft 24115. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
ovolshft.4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolshftlem2 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑦,𝑧   𝑔,𝑀,𝑧   𝜑,𝑓,𝑔,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑀(𝑥,𝑦,𝑓)

Proof of Theorem ovolshftlem2
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolshft.1 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
21ad3antrrr 728 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ℝ)
3 ovolshft.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
43ad3antrrr 728 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐶 ∈ ℝ)
5 ovolshft.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
65ad3antrrr 728 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
7 ovolshft.4 . . . . . . 7 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
8 eqid 2824 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔))
9 2fveq3 6678 . . . . . . . . . 10 (𝑚 = 𝑛 → (1st ‘(𝑔𝑚)) = (1st ‘(𝑔𝑛)))
109oveq1d 7174 . . . . . . . . 9 (𝑚 = 𝑛 → ((1st ‘(𝑔𝑚)) + 𝐶) = ((1st ‘(𝑔𝑛)) + 𝐶))
11 2fveq3 6678 . . . . . . . . . 10 (𝑚 = 𝑛 → (2nd ‘(𝑔𝑚)) = (2nd ‘(𝑔𝑛)))
1211oveq1d 7174 . . . . . . . . 9 (𝑚 = 𝑛 → ((2nd ‘(𝑔𝑚)) + 𝐶) = ((2nd ‘(𝑔𝑛)) + 𝐶))
1310, 12opeq12d 4814 . . . . . . . 8 (𝑚 = 𝑛 → ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩ = ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
1413cbvmptv 5172 . . . . . . 7 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
15 simplr 767 . . . . . . . 8 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
16 elovolmlem 24078 . . . . . . . 8 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1715, 16sylib 220 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
18 simpr 487 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ran ((,) ∘ 𝑔))
192, 4, 6, 7, 8, 14, 17, 18ovolshftlem1 24113 . . . . . 6 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀)
20 eleq1a 2911 . . . . . 6 (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2119, 20syl 17 . . . . 5 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2221expimpd 456 . . . 4 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2322rexlimdva 3287 . . 3 ((𝜑𝑧 ∈ ℝ*) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2423ralrimiva 3185 . 2 (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
25 rabss 4051 . 2 ({𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2624, 25sylibr 236 1 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3141  wrex 3142  {crab 3145  cin 3938  wss 3939  cop 4576   cuni 4841  cmpt 5149   × cxp 5556  ran crn 5559  ccom 5562  wf 6354  cfv 6358  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  m cmap 8409  supcsup 8907  cr 10539  1c1 10541   + caddc 10543  *cxr 10677   < clt 10678  cle 10679  cmin 10873  cn 11641  (,)cioo 12741  seqcseq 13372  abscabs 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ioo 12745  df-ico 12747  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598
This theorem is referenced by:  ovolshft  24115
  Copyright terms: Public domain W3C validator