Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovolshftlem2 | Structured version Visualization version GIF version |
Description: Lemma for ovolshft 24685. (Contributed by Mario Carneiro, 22-Mar-2014.) |
Ref | Expression |
---|---|
ovolshft.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ovolshft.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ovolshft.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
ovolshft.4 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
Ref | Expression |
---|---|
ovolshftlem2 | ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolshft.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | ad3antrrr 727 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ℝ) |
3 | ovolshft.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 3 | ad3antrrr 727 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐶 ∈ ℝ) |
5 | ovolshft.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) | |
6 | 5 | ad3antrrr 727 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
7 | ovolshft.4 | . . . . . . 7 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
8 | eqid 2738 | . . . . . . 7 ⊢ seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔)) | |
9 | 2fveq3 6771 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑛 → (1st ‘(𝑔‘𝑚)) = (1st ‘(𝑔‘𝑛))) | |
10 | 9 | oveq1d 7282 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → ((1st ‘(𝑔‘𝑚)) + 𝐶) = ((1st ‘(𝑔‘𝑛)) + 𝐶)) |
11 | 2fveq3 6771 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑛 → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘𝑛))) | |
12 | 11 | oveq1d 7282 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → ((2nd ‘(𝑔‘𝑚)) + 𝐶) = ((2nd ‘(𝑔‘𝑛)) + 𝐶)) |
13 | 10, 12 | opeq12d 4812 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → 〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉 = 〈((1st ‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
14 | 13 | cbvmptv 5186 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ ↦ 〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉) = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
15 | simplr 766 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) | |
16 | elovolmlem 24648 | . . . . . . . 8 ⊢ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
17 | 15, 16 | sylib 217 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
18 | simpr 485 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) | |
19 | 2, 4, 6, 7, 8, 14, 17, 18 | ovolshftlem1 24683 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀) |
20 | eleq1a 2834 | . . . . . 6 ⊢ (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧 ∈ 𝑀)) | |
21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧 ∈ 𝑀)) |
22 | 21 | expimpd 454 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
23 | 22 | rexlimdva 3211 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
24 | 23 | ralrimiva 3108 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
25 | rabss 4004 | . 2 ⊢ ({𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) | |
26 | 24, 25 | sylibr 233 | 1 ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 {crab 3068 ∩ cin 3885 ⊆ wss 3886 〈cop 4567 ∪ cuni 4839 ↦ cmpt 5156 × cxp 5582 ran crn 5585 ∘ ccom 5588 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 1st c1st 7818 2nd c2nd 7819 ↑m cmap 8602 supcsup 9186 ℝcr 10880 1c1 10882 + caddc 10884 ℝ*cxr 11018 < clt 11019 ≤ cle 11020 − cmin 11215 ℕcn 11983 (,)cioo 13089 seqcseq 13731 abscabs 14955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-sup 9188 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-ioo 13093 df-ico 13095 df-fz 13250 df-seq 13732 df-exp 13793 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 |
This theorem is referenced by: ovolshft 24685 |
Copyright terms: Public domain | W3C validator |