MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem2 Structured version   Visualization version   GIF version

Theorem ovolshftlem2 25413
Description: Lemma for ovolshft 25414. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
ovolshft.4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolshftlem2 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑦,𝑧   𝑔,𝑀,𝑧   𝜑,𝑓,𝑔,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑀(𝑥,𝑦,𝑓)

Proof of Theorem ovolshftlem2
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolshft.1 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
21ad3antrrr 729 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ℝ)
3 ovolshft.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
43ad3antrrr 729 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐶 ∈ ℝ)
5 ovolshft.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
65ad3antrrr 729 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
7 ovolshft.4 . . . . . . 7 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
8 eqid 2727 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔))
9 2fveq3 6896 . . . . . . . . . 10 (𝑚 = 𝑛 → (1st ‘(𝑔𝑚)) = (1st ‘(𝑔𝑛)))
109oveq1d 7429 . . . . . . . . 9 (𝑚 = 𝑛 → ((1st ‘(𝑔𝑚)) + 𝐶) = ((1st ‘(𝑔𝑛)) + 𝐶))
11 2fveq3 6896 . . . . . . . . . 10 (𝑚 = 𝑛 → (2nd ‘(𝑔𝑚)) = (2nd ‘(𝑔𝑛)))
1211oveq1d 7429 . . . . . . . . 9 (𝑚 = 𝑛 → ((2nd ‘(𝑔𝑚)) + 𝐶) = ((2nd ‘(𝑔𝑛)) + 𝐶))
1310, 12opeq12d 4877 . . . . . . . 8 (𝑚 = 𝑛 → ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩ = ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
1413cbvmptv 5255 . . . . . . 7 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
15 simplr 768 . . . . . . . 8 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
16 elovolmlem 25377 . . . . . . . 8 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1715, 16sylib 217 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
18 simpr 484 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ran ((,) ∘ 𝑔))
192, 4, 6, 7, 8, 14, 17, 18ovolshftlem1 25412 . . . . . 6 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀)
20 eleq1a 2823 . . . . . 6 (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2119, 20syl 17 . . . . 5 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2221expimpd 453 . . . 4 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2322rexlimdva 3150 . . 3 ((𝜑𝑧 ∈ ℝ*) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2423ralrimiva 3141 . 2 (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
25 rabss 4065 . 2 ({𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2624, 25sylibr 233 1 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3056  wrex 3065  {crab 3427  cin 3943  wss 3944  cop 4630   cuni 4903  cmpt 5225   × cxp 5670  ran crn 5673  ccom 5676  wf 6538  cfv 6542  (class class class)co 7414  1st c1st 7983  2nd c2nd 7984  m cmap 8834  supcsup 9449  cr 11123  1c1 11125   + caddc 11127  *cxr 11263   < clt 11264  cle 11265  cmin 11460  cn 12228  (,)cioo 13342  seqcseq 13984  abscabs 15199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9451  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-n0 12489  df-z 12575  df-uz 12839  df-rp 12993  df-ioo 13346  df-ico 13348  df-fz 13503  df-seq 13985  df-exp 14045  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201
This theorem is referenced by:  ovolshft  25414
  Copyright terms: Public domain W3C validator