Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovolshftlem2 | Structured version Visualization version GIF version |
Description: Lemma for ovolshft 24580. (Contributed by Mario Carneiro, 22-Mar-2014.) |
Ref | Expression |
---|---|
ovolshft.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ovolshft.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ovolshft.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
ovolshft.4 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
Ref | Expression |
---|---|
ovolshftlem2 | ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolshft.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | ad3antrrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ℝ) |
3 | ovolshft.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 3 | ad3antrrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐶 ∈ ℝ) |
5 | ovolshft.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) | |
6 | 5 | ad3antrrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
7 | ovolshft.4 | . . . . . . 7 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
8 | eqid 2738 | . . . . . . 7 ⊢ seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔)) | |
9 | 2fveq3 6761 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑛 → (1st ‘(𝑔‘𝑚)) = (1st ‘(𝑔‘𝑛))) | |
10 | 9 | oveq1d 7270 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → ((1st ‘(𝑔‘𝑚)) + 𝐶) = ((1st ‘(𝑔‘𝑛)) + 𝐶)) |
11 | 2fveq3 6761 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑛 → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘𝑛))) | |
12 | 11 | oveq1d 7270 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → ((2nd ‘(𝑔‘𝑚)) + 𝐶) = ((2nd ‘(𝑔‘𝑛)) + 𝐶)) |
13 | 10, 12 | opeq12d 4809 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → 〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉 = 〈((1st ‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
14 | 13 | cbvmptv 5183 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ ↦ 〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉) = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
15 | simplr 765 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) | |
16 | elovolmlem 24543 | . . . . . . . 8 ⊢ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
17 | 15, 16 | sylib 217 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
18 | simpr 484 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) | |
19 | 2, 4, 6, 7, 8, 14, 17, 18 | ovolshftlem1 24578 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀) |
20 | eleq1a 2834 | . . . . . 6 ⊢ (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧 ∈ 𝑀)) | |
21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧 ∈ 𝑀)) |
22 | 21 | expimpd 453 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
23 | 22 | rexlimdva 3212 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
24 | 23 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
25 | rabss 4001 | . 2 ⊢ ({𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) | |
26 | 24, 25 | sylibr 233 | 1 ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 ∩ cin 3882 ⊆ wss 3883 〈cop 4564 ∪ cuni 4836 ↦ cmpt 5153 × cxp 5578 ran crn 5581 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 ↑m cmap 8573 supcsup 9129 ℝcr 10801 1c1 10803 + caddc 10805 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 ℕcn 11903 (,)cioo 13008 seqcseq 13649 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ioo 13012 df-ico 13014 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: ovolshft 24580 |
Copyright terms: Public domain | W3C validator |