MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem2 Structured version   Visualization version   GIF version

Theorem ovolshftlem2 25452
Description: Lemma for ovolshft 25453. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
ovolshft.4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolshftlem2 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑦,𝑧   𝑔,𝑀,𝑧   𝜑,𝑓,𝑔,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑀(𝑥,𝑦,𝑓)

Proof of Theorem ovolshftlem2
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolshft.1 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
21ad3antrrr 728 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ℝ)
3 ovolshft.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
43ad3antrrr 728 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐶 ∈ ℝ)
5 ovolshft.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
65ad3antrrr 728 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
7 ovolshft.4 . . . . . . 7 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
8 eqid 2725 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔))
9 2fveq3 6895 . . . . . . . . . 10 (𝑚 = 𝑛 → (1st ‘(𝑔𝑚)) = (1st ‘(𝑔𝑛)))
109oveq1d 7428 . . . . . . . . 9 (𝑚 = 𝑛 → ((1st ‘(𝑔𝑚)) + 𝐶) = ((1st ‘(𝑔𝑛)) + 𝐶))
11 2fveq3 6895 . . . . . . . . . 10 (𝑚 = 𝑛 → (2nd ‘(𝑔𝑚)) = (2nd ‘(𝑔𝑛)))
1211oveq1d 7428 . . . . . . . . 9 (𝑚 = 𝑛 → ((2nd ‘(𝑔𝑚)) + 𝐶) = ((2nd ‘(𝑔𝑛)) + 𝐶))
1310, 12opeq12d 4878 . . . . . . . 8 (𝑚 = 𝑛 → ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩ = ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
1413cbvmptv 5257 . . . . . . 7 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
15 simplr 767 . . . . . . . 8 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
16 elovolmlem 25416 . . . . . . . 8 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1715, 16sylib 217 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
18 simpr 483 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ran ((,) ∘ 𝑔))
192, 4, 6, 7, 8, 14, 17, 18ovolshftlem1 25451 . . . . . 6 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀)
20 eleq1a 2820 . . . . . 6 (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2119, 20syl 17 . . . . 5 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2221expimpd 452 . . . 4 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2322rexlimdva 3145 . . 3 ((𝜑𝑧 ∈ ℝ*) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2423ralrimiva 3136 . 2 (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
25 rabss 4062 . 2 ({𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2624, 25sylibr 233 1 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051  wrex 3060  {crab 3419  cin 3940  wss 3941  cop 4631   cuni 4904  cmpt 5227   × cxp 5671  ran crn 5674  ccom 5677  wf 6539  cfv 6543  (class class class)co 7413  1st c1st 7985  2nd c2nd 7986  m cmap 8838  supcsup 9458  cr 11132  1c1 11134   + caddc 11136  *cxr 11272   < clt 11273  cle 11274  cmin 11469  cn 12237  (,)cioo 13351  seqcseq 13993  abscabs 15208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-ioo 13355  df-ico 13357  df-fz 13512  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210
This theorem is referenced by:  ovolshft  25453
  Copyright terms: Public domain W3C validator