| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolshftlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ovolshft 25469. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| Ref | Expression |
|---|---|
| ovolshft.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ovolshft.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ovolshft.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
| ovolshft.4 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| Ref | Expression |
|---|---|
| ovolshftlem2 | ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolshft.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | 1 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ℝ) |
| 3 | ovolshft.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | 3 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐶 ∈ ℝ) |
| 5 | ovolshft.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) | |
| 6 | 5 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
| 7 | ovolshft.4 | . . . . . . 7 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
| 8 | eqid 2736 | . . . . . . 7 ⊢ seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔)) | |
| 9 | 2fveq3 6886 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑛 → (1st ‘(𝑔‘𝑚)) = (1st ‘(𝑔‘𝑛))) | |
| 10 | 9 | oveq1d 7425 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → ((1st ‘(𝑔‘𝑚)) + 𝐶) = ((1st ‘(𝑔‘𝑛)) + 𝐶)) |
| 11 | 2fveq3 6886 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑛 → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘𝑛))) | |
| 12 | 11 | oveq1d 7425 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → ((2nd ‘(𝑔‘𝑚)) + 𝐶) = ((2nd ‘(𝑔‘𝑛)) + 𝐶)) |
| 13 | 10, 12 | opeq12d 4862 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → 〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉 = 〈((1st ‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
| 14 | 13 | cbvmptv 5230 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ ↦ 〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉) = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
| 15 | simplr 768 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) | |
| 16 | elovolmlem 25432 | . . . . . . . 8 ⊢ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 17 | 15, 16 | sylib 218 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) | |
| 19 | 2, 4, 6, 7, 8, 14, 17, 18 | ovolshftlem1 25467 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀) |
| 20 | eleq1a 2830 | . . . . . 6 ⊢ (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧 ∈ 𝑀)) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧 ∈ 𝑀)) |
| 22 | 21 | expimpd 453 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
| 23 | 22 | rexlimdva 3142 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
| 24 | 23 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
| 25 | rabss 4052 | . 2 ⊢ ({𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) | |
| 26 | 24, 25 | sylibr 234 | 1 ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 {crab 3420 ∩ cin 3930 ⊆ wss 3931 〈cop 4612 ∪ cuni 4888 ↦ cmpt 5206 × cxp 5657 ran crn 5660 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 ↑m cmap 8845 supcsup 9457 ℝcr 11133 1c1 11135 + caddc 11137 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 − cmin 11471 ℕcn 12245 (,)cioo 13367 seqcseq 14024 abscabs 15258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ioo 13371 df-ico 13373 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 |
| This theorem is referenced by: ovolshft 25469 |
| Copyright terms: Public domain | W3C validator |