![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolshftlem2 | Structured version Visualization version GIF version |
Description: Lemma for ovolshft 23616. (Contributed by Mario Carneiro, 22-Mar-2014.) |
Ref | Expression |
---|---|
ovolshft.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ovolshft.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ovolshft.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
ovolshft.4 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
Ref | Expression |
---|---|
ovolshftlem2 | ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolshft.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | ad3antrrr 722 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ℝ) |
3 | ovolshft.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 3 | ad3antrrr 722 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐶 ∈ ℝ) |
5 | ovolshft.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) | |
6 | 5 | ad3antrrr 722 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
7 | ovolshft.4 | . . . . . . 7 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
8 | eqid 2797 | . . . . . . 7 ⊢ seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔)) | |
9 | 2fveq3 6414 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑛 → (1st ‘(𝑔‘𝑚)) = (1st ‘(𝑔‘𝑛))) | |
10 | 9 | oveq1d 6891 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → ((1st ‘(𝑔‘𝑚)) + 𝐶) = ((1st ‘(𝑔‘𝑛)) + 𝐶)) |
11 | 2fveq3 6414 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑛 → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘𝑛))) | |
12 | 11 | oveq1d 6891 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → ((2nd ‘(𝑔‘𝑚)) + 𝐶) = ((2nd ‘(𝑔‘𝑛)) + 𝐶)) |
13 | 10, 12 | opeq12d 4599 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → 〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉 = 〈((1st ‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
14 | 13 | cbvmptv 4941 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ ↦ 〈((1st ‘(𝑔‘𝑚)) + 𝐶), ((2nd ‘(𝑔‘𝑚)) + 𝐶)〉) = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝑔‘𝑛)) + 𝐶), ((2nd ‘(𝑔‘𝑛)) + 𝐶)〉) |
15 | simplr 786 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) | |
16 | elovolmlem 23579 | . . . . . . . 8 ⊢ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
17 | 15, 16 | sylib 210 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
18 | simpr 478 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) | |
19 | 2, 4, 6, 7, 8, 14, 17, 18 | ovolshftlem1 23614 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀) |
20 | eleq1a 2871 | . . . . . 6 ⊢ (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧 ∈ 𝑀)) | |
21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧 ∈ 𝑀)) |
22 | 21 | expimpd 446 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
23 | 22 | rexlimdva 3210 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
24 | 23 | ralrimiva 3145 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) |
25 | rabss 3873 | . 2 ⊢ ({𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧 ∈ 𝑀)) | |
26 | 24, 25 | sylibr 226 | 1 ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ∃wrex 3088 {crab 3091 ∩ cin 3766 ⊆ wss 3767 〈cop 4372 ∪ cuni 4626 ↦ cmpt 4920 × cxp 5308 ran crn 5311 ∘ ccom 5314 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 1st c1st 7397 2nd c2nd 7398 ↑𝑚 cmap 8093 supcsup 8586 ℝcr 10221 1c1 10223 + caddc 10225 ℝ*cxr 10360 < clt 10361 ≤ cle 10362 − cmin 10554 ℕcn 11310 (,)cioo 12420 seqcseq 13051 abscabs 14312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-sup 8588 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-n0 11577 df-z 11663 df-uz 11927 df-rp 12071 df-ioo 12424 df-ico 12426 df-fz 12577 df-seq 13052 df-exp 13111 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 |
This theorem is referenced by: ovolshft 23616 |
Copyright terms: Public domain | W3C validator |