Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmran2 Structured version   Visualization version   GIF version

Theorem reldmran2 49600
Description: The domain of (𝑃 Ran 𝐸) is a relation. (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
reldmran2 Rel dom (𝑃 Ran 𝐸)

Proof of Theorem reldmran2
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5753 . . 3 Rel ∅
2 df-ov 7372 . . . . . . 7 (𝑃 Ran 𝐸) = ( Ran ‘⟨𝑃, 𝐸⟩)
3 id 22 . . . . . . 7 (( Ran ‘⟨𝑃, 𝐸⟩) = ∅ → ( Ran ‘⟨𝑃, 𝐸⟩) = ∅)
42, 3eqtrid 2776 . . . . . 6 (( Ran ‘⟨𝑃, 𝐸⟩) = ∅ → (𝑃 Ran 𝐸) = ∅)
54dmeqd 5859 . . . . 5 (( Ran ‘⟨𝑃, 𝐸⟩) = ∅ → dom (𝑃 Ran 𝐸) = dom ∅)
6 dm0 5874 . . . . 5 dom ∅ = ∅
75, 6eqtrdi 2780 . . . 4 (( Ran ‘⟨𝑃, 𝐸⟩) = ∅ → dom (𝑃 Ran 𝐸) = ∅)
87releqd 5733 . . 3 (( Ran ‘⟨𝑃, 𝐸⟩) = ∅ → (Rel dom (𝑃 Ran 𝐸) ↔ Rel ∅))
91, 8mpbiri 258 . 2 (( Ran ‘⟨𝑃, 𝐸⟩) = ∅ → Rel dom (𝑃 Ran 𝐸))
10 eqid 2729 . . . 4 (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ (( oppFunc ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥)) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ (( oppFunc ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥))
1110reldmmpo 7503 . . 3 Rel dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ (( oppFunc ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥))
12 fvfundmfvn0 6883 . . . . . . . . . 10 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (⟨𝑃, 𝐸⟩ ∈ dom Ran ∧ Fun ( Ran ↾ {⟨𝑃, 𝐸⟩})))
1312simpld 494 . . . . . . . . 9 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → ⟨𝑃, 𝐸⟩ ∈ dom Ran )
14 ranfn 49592 . . . . . . . . . 10 Ran Fn ((V × V) × V)
1514fndmi 6604 . . . . . . . . 9 dom Ran = ((V × V) × V)
1613, 15eleqtrdi 2838 . . . . . . . 8 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → ⟨𝑃, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5673 . . . . . . . 8 (⟨𝑃, 𝐸⟩ ∈ ((V × V) × V) → 𝑃 ∈ (V × V))
18 1st2nd2 7986 . . . . . . . 8 (𝑃 ∈ (V × V) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1916, 17, 183syl 18 . . . . . . 7 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
2019oveq1d 7384 . . . . . 6 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (𝑃 Ran 𝐸) = (⟨(1st𝑃), (2nd𝑃)⟩ Ran 𝐸))
21 eqid 2729 . . . . . . 7 ((2nd𝑃) FuncCat 𝐸) = ((2nd𝑃) FuncCat 𝐸)
22 eqid 2729 . . . . . . 7 ((1st𝑃) FuncCat 𝐸) = ((1st𝑃) FuncCat 𝐸)
23 fvexd 6855 . . . . . . 7 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (1st𝑃) ∈ V)
24 fvexd 6855 . . . . . . 7 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (2nd𝑃) ∈ V)
25 opelxp2 5674 . . . . . . . 8 (⟨𝑃, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2616, 25syl 17 . . . . . . 7 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → 𝐸 ∈ V)
27 eqid 2729 . . . . . . 7 (oppCat‘((2nd𝑃) FuncCat 𝐸)) = (oppCat‘((2nd𝑃) FuncCat 𝐸))
28 eqid 2729 . . . . . . 7 (oppCat‘((1st𝑃) FuncCat 𝐸)) = (oppCat‘((1st𝑃) FuncCat 𝐸))
2921, 22, 23, 24, 26, 27, 28ranfval 49596 . . . . . 6 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (⟨(1st𝑃), (2nd𝑃)⟩ Ran 𝐸) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ (( oppFunc ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥)))
3020, 29eqtrd 2764 . . . . 5 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (𝑃 Ran 𝐸) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ (( oppFunc ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥)))
3130dmeqd 5859 . . . 4 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → dom (𝑃 Ran 𝐸) = dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ (( oppFunc ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥)))
3231releqd 5733 . . 3 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (Rel dom (𝑃 Ran 𝐸) ↔ Rel dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ (( oppFunc ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥))))
3311, 32mpbiri 258 . 2 (( Ran ‘⟨𝑃, 𝐸⟩) ≠ ∅ → Rel dom (𝑃 Ran 𝐸))
349, 33pm2.61ine 3008 1 Rel dom (𝑃 Ran 𝐸)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  c0 4292  {csn 4585  cop 4591   × cxp 5629  dom cdm 5631  cres 5633  Rel wrel 5636  Fun wfun 6493  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  oppCatcoppc 17652   Func cfunc 17796   FuncCat cfuc 17887   oppFunc coppf 49104   UP cup 49155   −∘F cprcof 49355   Ran cran 49588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-ran 49590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator