| Step | Hyp | Ref
| Expression |
| 1 | | rel0 5764 |
. . 3
⊢ Rel
∅ |
| 2 | | df-ov 7392 |
. . . . . . 7
⊢ (𝑃 Ran 𝐸) = ( Ran ‘〈𝑃, 𝐸〉) |
| 3 | | id 22 |
. . . . . . 7
⊢ (( Ran
‘〈𝑃, 𝐸〉) = ∅ → ( Ran
‘〈𝑃, 𝐸〉) =
∅) |
| 4 | 2, 3 | eqtrid 2777 |
. . . . . 6
⊢ (( Ran
‘〈𝑃, 𝐸〉) = ∅ → (𝑃 Ran 𝐸) = ∅) |
| 5 | 4 | dmeqd 5871 |
. . . . 5
⊢ (( Ran
‘〈𝑃, 𝐸〉) = ∅ → dom
(𝑃 Ran 𝐸) = dom ∅) |
| 6 | | dm0 5886 |
. . . . 5
⊢ dom
∅ = ∅ |
| 7 | 5, 6 | eqtrdi 2781 |
. . . 4
⊢ (( Ran
‘〈𝑃, 𝐸〉) = ∅ → dom
(𝑃 Ran 𝐸) = ∅) |
| 8 | 7 | releqd 5743 |
. . 3
⊢ (( Ran
‘〈𝑃, 𝐸〉) = ∅ → (Rel
dom (𝑃 Ran 𝐸) ↔ Rel
∅)) |
| 9 | 1, 8 | mpbiri 258 |
. 2
⊢ (( Ran
‘〈𝑃, 𝐸〉) = ∅ → Rel dom
(𝑃 Ran 𝐸)) |
| 10 | | eqid 2730 |
. . . 4
⊢ (𝑓 ∈ ((1st
‘𝑃) Func
(2nd ‘𝑃)),
𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦ (( oppFunc
‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸)) UP
(oppCat‘((1st ‘𝑃) FuncCat 𝐸)))𝑥)) = (𝑓 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)), 𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦ (( oppFunc
‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸)) UP
(oppCat‘((1st ‘𝑃) FuncCat 𝐸)))𝑥)) |
| 11 | 10 | reldmmpo 7525 |
. . 3
⊢ Rel dom
(𝑓 ∈ ((1st
‘𝑃) Func
(2nd ‘𝑃)),
𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦ (( oppFunc
‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸)) UP
(oppCat‘((1st ‘𝑃) FuncCat 𝐸)))𝑥)) |
| 12 | | fvfundmfvn0 6903 |
. . . . . . . . . 10
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
(〈𝑃, 𝐸〉 ∈ dom Ran ∧ Fun ( Ran
↾ {〈𝑃, 𝐸〉}))) |
| 13 | 12 | simpld 494 |
. . . . . . . . 9
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
〈𝑃, 𝐸〉 ∈ dom Ran ) |
| 14 | | ranfn 49589 |
. . . . . . . . . 10
⊢ Ran Fn
((V × V) × V) |
| 15 | 14 | fndmi 6624 |
. . . . . . . . 9
⊢ dom Ran =
((V × V) × V) |
| 16 | 13, 15 | eleqtrdi 2839 |
. . . . . . . 8
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
〈𝑃, 𝐸〉 ∈ ((V × V) ×
V)) |
| 17 | | opelxp1 5682 |
. . . . . . . 8
⊢
(〈𝑃, 𝐸〉 ∈ ((V × V)
× V) → 𝑃 ∈
(V × V)) |
| 18 | | 1st2nd2 8009 |
. . . . . . . 8
⊢ (𝑃 ∈ (V × V) →
𝑃 = 〈(1st
‘𝑃), (2nd
‘𝑃)〉) |
| 19 | 16, 17, 18 | 3syl 18 |
. . . . . . 7
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
𝑃 = 〈(1st
‘𝑃), (2nd
‘𝑃)〉) |
| 20 | 19 | oveq1d 7404 |
. . . . . 6
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
(𝑃 Ran 𝐸) = (〈(1st ‘𝑃), (2nd ‘𝑃)〉 Ran 𝐸)) |
| 21 | | eqid 2730 |
. . . . . . 7
⊢
((2nd ‘𝑃) FuncCat 𝐸) = ((2nd ‘𝑃) FuncCat 𝐸) |
| 22 | | eqid 2730 |
. . . . . . 7
⊢
((1st ‘𝑃) FuncCat 𝐸) = ((1st ‘𝑃) FuncCat 𝐸) |
| 23 | | fvexd 6875 |
. . . . . . 7
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
(1st ‘𝑃)
∈ V) |
| 24 | | fvexd 6875 |
. . . . . . 7
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
(2nd ‘𝑃)
∈ V) |
| 25 | | opelxp2 5683 |
. . . . . . . 8
⊢
(〈𝑃, 𝐸〉 ∈ ((V × V)
× V) → 𝐸 ∈
V) |
| 26 | 16, 25 | syl 17 |
. . . . . . 7
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
𝐸 ∈
V) |
| 27 | | eqid 2730 |
. . . . . . 7
⊢
(oppCat‘((2nd ‘𝑃) FuncCat 𝐸)) = (oppCat‘((2nd
‘𝑃) FuncCat 𝐸)) |
| 28 | | eqid 2730 |
. . . . . . 7
⊢
(oppCat‘((1st ‘𝑃) FuncCat 𝐸)) = (oppCat‘((1st
‘𝑃) FuncCat 𝐸)) |
| 29 | 21, 22, 23, 24, 26, 27, 28 | ranfval 49593 |
. . . . . 6
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
(〈(1st ‘𝑃), (2nd ‘𝑃)〉 Ran 𝐸) = (𝑓 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)), 𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦ (( oppFunc
‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸)) UP
(oppCat‘((1st ‘𝑃) FuncCat 𝐸)))𝑥))) |
| 30 | 20, 29 | eqtrd 2765 |
. . . . 5
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ →
(𝑃 Ran 𝐸) = (𝑓 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)), 𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦ (( oppFunc
‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸)) UP
(oppCat‘((1st ‘𝑃) FuncCat 𝐸)))𝑥))) |
| 31 | 30 | dmeqd 5871 |
. . . 4
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ → dom
(𝑃 Ran 𝐸) = dom (𝑓 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)), 𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦ (( oppFunc
‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸)) UP
(oppCat‘((1st ‘𝑃) FuncCat 𝐸)))𝑥))) |
| 32 | 31 | releqd 5743 |
. . 3
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ → (Rel
dom (𝑃 Ran 𝐸) ↔ Rel dom (𝑓 ∈ ((1st
‘𝑃) Func
(2nd ‘𝑃)),
𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦ (( oppFunc
‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸)) UP
(oppCat‘((1st ‘𝑃) FuncCat 𝐸)))𝑥)))) |
| 33 | 11, 32 | mpbiri 258 |
. 2
⊢ (( Ran
‘〈𝑃, 𝐸〉) ≠ ∅ → Rel
dom (𝑃 Ran 𝐸)) |
| 34 | 9, 33 | pm2.61ine 3009 |
1
⊢ Rel dom
(𝑃 Ran 𝐸) |