| Step | Hyp | Ref
| Expression |
| 1 | | rel0 5776 |
. . 3
⊢ Rel
∅ |
| 2 | | df-ov 7403 |
. . . . . . 7
⊢ (𝑃Ran𝐸) = (Ran‘〈𝑃, 𝐸〉) |
| 3 | | id 22 |
. . . . . . 7
⊢
((Ran‘〈𝑃,
𝐸〉) = ∅ →
(Ran‘〈𝑃, 𝐸〉) =
∅) |
| 4 | 2, 3 | eqtrid 2781 |
. . . . . 6
⊢
((Ran‘〈𝑃,
𝐸〉) = ∅ →
(𝑃Ran𝐸) = ∅) |
| 5 | 4 | dmeqd 5883 |
. . . . 5
⊢
((Ran‘〈𝑃,
𝐸〉) = ∅ →
dom (𝑃Ran𝐸) = dom ∅) |
| 6 | | dm0 5898 |
. . . . 5
⊢ dom
∅ = ∅ |
| 7 | 5, 6 | eqtrdi 2785 |
. . . 4
⊢
((Ran‘〈𝑃,
𝐸〉) = ∅ →
dom (𝑃Ran𝐸) = ∅) |
| 8 | 7 | releqd 5755 |
. . 3
⊢
((Ran‘〈𝑃,
𝐸〉) = ∅ →
(Rel dom (𝑃Ran𝐸) ↔ Rel
∅)) |
| 9 | 1, 8 | mpbiri 258 |
. 2
⊢
((Ran‘〈𝑃,
𝐸〉) = ∅ →
Rel dom (𝑃Ran𝐸)) |
| 10 | | eqid 2734 |
. . . 4
⊢ (𝑓 ∈ ((1st
‘𝑃) Func
(2nd ‘𝑃)),
𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦
((oppFunc‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸))UP(oppCat‘((1st
‘𝑃) FuncCat 𝐸)))𝑥)) = (𝑓 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)), 𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦
((oppFunc‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸))UP(oppCat‘((1st
‘𝑃) FuncCat 𝐸)))𝑥)) |
| 11 | 10 | reldmmpo 7536 |
. . 3
⊢ Rel dom
(𝑓 ∈ ((1st
‘𝑃) Func
(2nd ‘𝑃)),
𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦
((oppFunc‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸))UP(oppCat‘((1st
‘𝑃) FuncCat 𝐸)))𝑥)) |
| 12 | | fvfundmfvn0 6916 |
. . . . . . . . . 10
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ (〈𝑃, 𝐸〉 ∈ dom Ran ∧ Fun
(Ran ↾ {〈𝑃,
𝐸〉}))) |
| 13 | 12 | simpld 494 |
. . . . . . . . 9
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ 〈𝑃, 𝐸〉 ∈ dom
Ran) |
| 14 | | ranfn 49348 |
. . . . . . . . . 10
⊢ Ran Fn
((V × V) × V) |
| 15 | 14 | fndmi 6639 |
. . . . . . . . 9
⊢ dom Ran =
((V × V) × V) |
| 16 | 13, 15 | eleqtrdi 2843 |
. . . . . . . 8
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ 〈𝑃, 𝐸〉 ∈ ((V × V)
× V)) |
| 17 | | opelxp1 5694 |
. . . . . . . 8
⊢
(〈𝑃, 𝐸〉 ∈ ((V × V)
× V) → 𝑃 ∈
(V × V)) |
| 18 | | 1st2nd2 8022 |
. . . . . . . 8
⊢ (𝑃 ∈ (V × V) →
𝑃 = 〈(1st
‘𝑃), (2nd
‘𝑃)〉) |
| 19 | 16, 17, 18 | 3syl 18 |
. . . . . . 7
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ 𝑃 =
〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 20 | 19 | oveq1d 7415 |
. . . . . 6
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ (𝑃Ran𝐸) = (〈(1st
‘𝑃), (2nd
‘𝑃)〉Ran𝐸)) |
| 21 | | eqid 2734 |
. . . . . . 7
⊢
((2nd ‘𝑃) FuncCat 𝐸) = ((2nd ‘𝑃) FuncCat 𝐸) |
| 22 | | eqid 2734 |
. . . . . . 7
⊢
((1st ‘𝑃) FuncCat 𝐸) = ((1st ‘𝑃) FuncCat 𝐸) |
| 23 | | fvexd 6888 |
. . . . . . 7
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ (1st ‘𝑃) ∈ V) |
| 24 | | fvexd 6888 |
. . . . . . 7
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ (2nd ‘𝑃) ∈ V) |
| 25 | | opelxp2 5695 |
. . . . . . . 8
⊢
(〈𝑃, 𝐸〉 ∈ ((V × V)
× V) → 𝐸 ∈
V) |
| 26 | 16, 25 | syl 17 |
. . . . . . 7
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ 𝐸 ∈
V) |
| 27 | | eqid 2734 |
. . . . . . 7
⊢
(oppCat‘((2nd ‘𝑃) FuncCat 𝐸)) = (oppCat‘((2nd
‘𝑃) FuncCat 𝐸)) |
| 28 | | eqid 2734 |
. . . . . . 7
⊢
(oppCat‘((1st ‘𝑃) FuncCat 𝐸)) = (oppCat‘((1st
‘𝑃) FuncCat 𝐸)) |
| 29 | 21, 22, 23, 24, 26, 27, 28 | ranfval 49352 |
. . . . . 6
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ (〈(1st ‘𝑃), (2nd ‘𝑃)〉Ran𝐸) = (𝑓 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)), 𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦
((oppFunc‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸))UP(oppCat‘((1st
‘𝑃) FuncCat 𝐸)))𝑥))) |
| 30 | 20, 29 | eqtrd 2769 |
. . . . 5
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ (𝑃Ran𝐸) = (𝑓 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)), 𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦
((oppFunc‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸))UP(oppCat‘((1st
‘𝑃) FuncCat 𝐸)))𝑥))) |
| 31 | 30 | dmeqd 5883 |
. . . 4
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ dom (𝑃Ran𝐸) = dom (𝑓 ∈ ((1st ‘𝑃) Func (2nd
‘𝑃)), 𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦
((oppFunc‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸))UP(oppCat‘((1st
‘𝑃) FuncCat 𝐸)))𝑥))) |
| 32 | 31 | releqd 5755 |
. . 3
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ (Rel dom (𝑃Ran𝐸) ↔ Rel dom (𝑓 ∈ ((1st
‘𝑃) Func
(2nd ‘𝑃)),
𝑥 ∈ ((1st
‘𝑃) Func 𝐸) ↦
((oppFunc‘(〈(2nd ‘𝑃), 𝐸〉 −∘F
𝑓))((oppCat‘((2nd
‘𝑃) FuncCat 𝐸))UP(oppCat‘((1st
‘𝑃) FuncCat 𝐸)))𝑥)))) |
| 33 | 11, 32 | mpbiri 258 |
. 2
⊢
((Ran‘〈𝑃,
𝐸〉) ≠ ∅
→ Rel dom (𝑃Ran𝐸)) |
| 34 | 9, 33 | pm2.61ine 3014 |
1
⊢ Rel dom
(𝑃Ran𝐸) |