Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmran2 Structured version   Visualization version   GIF version

Theorem reldmran2 49354
Description: The domain of (𝑃Ran𝐸) is a relation. (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
reldmran2 Rel dom (𝑃Ran𝐸)

Proof of Theorem reldmran2
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5776 . . 3 Rel ∅
2 df-ov 7403 . . . . . . 7 (𝑃Ran𝐸) = (Ran‘⟨𝑃, 𝐸⟩)
3 id 22 . . . . . . 7 ((Ran‘⟨𝑃, 𝐸⟩) = ∅ → (Ran‘⟨𝑃, 𝐸⟩) = ∅)
42, 3eqtrid 2781 . . . . . 6 ((Ran‘⟨𝑃, 𝐸⟩) = ∅ → (𝑃Ran𝐸) = ∅)
54dmeqd 5883 . . . . 5 ((Ran‘⟨𝑃, 𝐸⟩) = ∅ → dom (𝑃Ran𝐸) = dom ∅)
6 dm0 5898 . . . . 5 dom ∅ = ∅
75, 6eqtrdi 2785 . . . 4 ((Ran‘⟨𝑃, 𝐸⟩) = ∅ → dom (𝑃Ran𝐸) = ∅)
87releqd 5755 . . 3 ((Ran‘⟨𝑃, 𝐸⟩) = ∅ → (Rel dom (𝑃Ran𝐸) ↔ Rel ∅))
91, 8mpbiri 258 . 2 ((Ran‘⟨𝑃, 𝐸⟩) = ∅ → Rel dom (𝑃Ran𝐸))
10 eqid 2734 . . . 4 (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((oppFunc‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸))UP(oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥)) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((oppFunc‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸))UP(oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥))
1110reldmmpo 7536 . . 3 Rel dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((oppFunc‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸))UP(oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥))
12 fvfundmfvn0 6916 . . . . . . . . . 10 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → (⟨𝑃, 𝐸⟩ ∈ dom Ran ∧ Fun (Ran ↾ {⟨𝑃, 𝐸⟩})))
1312simpld 494 . . . . . . . . 9 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → ⟨𝑃, 𝐸⟩ ∈ dom Ran)
14 ranfn 49348 . . . . . . . . . 10 Ran Fn ((V × V) × V)
1514fndmi 6639 . . . . . . . . 9 dom Ran = ((V × V) × V)
1613, 15eleqtrdi 2843 . . . . . . . 8 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → ⟨𝑃, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5694 . . . . . . . 8 (⟨𝑃, 𝐸⟩ ∈ ((V × V) × V) → 𝑃 ∈ (V × V))
18 1st2nd2 8022 . . . . . . . 8 (𝑃 ∈ (V × V) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1916, 17, 183syl 18 . . . . . . 7 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
2019oveq1d 7415 . . . . . 6 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → (𝑃Ran𝐸) = (⟨(1st𝑃), (2nd𝑃)⟩Ran𝐸))
21 eqid 2734 . . . . . . 7 ((2nd𝑃) FuncCat 𝐸) = ((2nd𝑃) FuncCat 𝐸)
22 eqid 2734 . . . . . . 7 ((1st𝑃) FuncCat 𝐸) = ((1st𝑃) FuncCat 𝐸)
23 fvexd 6888 . . . . . . 7 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → (1st𝑃) ∈ V)
24 fvexd 6888 . . . . . . 7 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → (2nd𝑃) ∈ V)
25 opelxp2 5695 . . . . . . . 8 (⟨𝑃, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2616, 25syl 17 . . . . . . 7 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → 𝐸 ∈ V)
27 eqid 2734 . . . . . . 7 (oppCat‘((2nd𝑃) FuncCat 𝐸)) = (oppCat‘((2nd𝑃) FuncCat 𝐸))
28 eqid 2734 . . . . . . 7 (oppCat‘((1st𝑃) FuncCat 𝐸)) = (oppCat‘((1st𝑃) FuncCat 𝐸))
2921, 22, 23, 24, 26, 27, 28ranfval 49352 . . . . . 6 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → (⟨(1st𝑃), (2nd𝑃)⟩Ran𝐸) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((oppFunc‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸))UP(oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥)))
3020, 29eqtrd 2769 . . . . 5 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → (𝑃Ran𝐸) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((oppFunc‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸))UP(oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥)))
3130dmeqd 5883 . . . 4 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → dom (𝑃Ran𝐸) = dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((oppFunc‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸))UP(oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥)))
3231releqd 5755 . . 3 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → (Rel dom (𝑃Ran𝐸) ↔ Rel dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((oppFunc‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓))((oppCat‘((2nd𝑃) FuncCat 𝐸))UP(oppCat‘((1st𝑃) FuncCat 𝐸)))𝑥))))
3311, 32mpbiri 258 . 2 ((Ran‘⟨𝑃, 𝐸⟩) ≠ ∅ → Rel dom (𝑃Ran𝐸))
349, 33pm2.61ine 3014 1 Rel dom (𝑃Ran𝐸)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  wne 2931  Vcvv 3457  c0 4306  {csn 4599  cop 4605   × cxp 5650  dom cdm 5652  cres 5654  Rel wrel 5657  Fun wfun 6522  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982  oppCatcoppc 17710   Func cfunc 17854   FuncCat cfuc 17945  oppFunccoppf 48950  UPcup 48974   −∘F cprcof 49147  Rancran 49344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-ran 49346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator