Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranrcl Structured version   Visualization version   GIF version

Theorem ranrcl 49733
Description: Reverse closure for right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
ranrcl (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))

Proof of Theorem ranrcl
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → 𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋))
2 ne0i 4288 . . . . 5 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅)
3 eqid 2731 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
4 eqid 2731 . . . . . 6 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
5 df-ov 7349 . . . . . . . . . 10 (⟨𝐶, 𝐷⟩ Ran 𝐸) = ( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩)
65eqeq1i 2736 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Ran 𝐸) = ∅ ↔ ( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅)
7 oveq 7352 . . . . . . . . . 10 ((⟨𝐶, 𝐷⟩ Ran 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = (𝐹𝑋))
8 0ov 7383 . . . . . . . . . 10 (𝐹𝑋) = ∅
97, 8eqtrdi 2782 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Ran 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = ∅)
106, 9sylbir 235 . . . . . . . 8 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = ∅)
1110necon3i 2960 . . . . . . 7 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → ( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅)
12 fvfundmfvn0 6862 . . . . . . . . 9 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Ran ∧ Fun ( Ran ↾ {⟨⟨𝐶, 𝐷⟩, 𝐸⟩})))
1312simpld 494 . . . . . . . 8 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Ran )
14 ranfn 49721 . . . . . . . . 9 Ran Fn ((V × V) × V)
1514fndmi 6585 . . . . . . . 8 dom Ran = ((V × V) × V)
1613, 15eleqtrdi 2841 . . . . . . 7 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5656 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → ⟨𝐶, 𝐷⟩ ∈ (V × V))
18 opelxp1 5656 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐶 ∈ V)
1911, 16, 17, 184syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → 𝐶 ∈ V)
20 opelxp2 5657 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐷 ∈ V)
2111, 16, 17, 204syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → 𝐷 ∈ V)
22 opelxp2 5657 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2311, 16, 223syl 18 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → 𝐸 ∈ V)
24 eqid 2731 . . . . . 6 (oppCat‘(𝐷 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐸))
25 eqid 2731 . . . . . 6 (oppCat‘(𝐶 FuncCat 𝐸)) = (oppCat‘(𝐶 FuncCat 𝐸))
263, 4, 19, 21, 23, 24, 25ranfval 49725 . . . . 5 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → (⟨𝐶, 𝐷⟩ Ran 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥)))
272, 26syl 17 . . . 4 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (⟨𝐶, 𝐷⟩ Ran 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥)))
2827oveqd 7363 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋))
291, 28eleqtrd 2833 . 2 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → 𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋))
30 eqid 2731 . . 3 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))
3130elmpocl 7587 . 2 (𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
3229, 31syl 17 1 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4280  {csn 4573  cop 4579   × cxp 5612  dom cdm 5614  cres 5616  Fun wfun 6475  cfv 6481  (class class class)co 7346  cmpo 7348  oppCatcoppc 17617   Func cfunc 17761   FuncCat cfuc 17852   oppFunc coppf 49233   UP cup 49284   −∘F cprcof 49484   Ran cran 49717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ran 49719
This theorem is referenced by:  relran  49735  isran  49739  ranrcl2  49747  ranrcl3  49748
  Copyright terms: Public domain W3C validator