| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . 3
⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) → 𝐿 ∈ (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋)) |
| 2 | | ne0i 4314 |
. . . . 5
⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) → (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) ≠ ∅) |
| 3 | | eqid 2734 |
. . . . . 6
⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) |
| 4 | | eqid 2734 |
. . . . . 6
⊢ (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸) |
| 5 | | df-ov 7403 |
. . . . . . . . . 10
⊢
(〈𝐶, 𝐷〉Ran𝐸) = (Ran‘〈〈𝐶, 𝐷〉, 𝐸〉) |
| 6 | 5 | eqeq1i 2739 |
. . . . . . . . 9
⊢
((〈𝐶, 𝐷〉Ran𝐸) = ∅ ↔
(Ran‘〈〈𝐶,
𝐷〉, 𝐸〉) = ∅) |
| 7 | | oveq 7406 |
. . . . . . . . . 10
⊢
((〈𝐶, 𝐷〉Ran𝐸) = ∅ → (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) = (𝐹∅𝑋)) |
| 8 | | 0ov 7437 |
. . . . . . . . . 10
⊢ (𝐹∅𝑋) = ∅ |
| 9 | 7, 8 | eqtrdi 2785 |
. . . . . . . . 9
⊢
((〈𝐶, 𝐷〉Ran𝐸) = ∅ → (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) = ∅) |
| 10 | 6, 9 | sylbir 235 |
. . . . . . . 8
⊢
((Ran‘〈〈𝐶, 𝐷〉, 𝐸〉) = ∅ → (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) = ∅) |
| 11 | 10 | necon3i 2963 |
. . . . . . 7
⊢ ((𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) ≠ ∅ →
(Ran‘〈〈𝐶,
𝐷〉, 𝐸〉) ≠ ∅) |
| 12 | | fvfundmfvn0 6916 |
. . . . . . . . 9
⊢
((Ran‘〈〈𝐶, 𝐷〉, 𝐸〉) ≠ ∅ →
(〈〈𝐶, 𝐷〉, 𝐸〉 ∈ dom Ran ∧ Fun (Ran ↾
{〈〈𝐶, 𝐷〉, 𝐸〉}))) |
| 13 | 12 | simpld 494 |
. . . . . . . 8
⊢
((Ran‘〈〈𝐶, 𝐷〉, 𝐸〉) ≠ ∅ →
〈〈𝐶, 𝐷〉, 𝐸〉 ∈ dom Ran) |
| 14 | | ranfn 49348 |
. . . . . . . . 9
⊢ Ran Fn
((V × V) × V) |
| 15 | 14 | fndmi 6639 |
. . . . . . . 8
⊢ dom Ran =
((V × V) × V) |
| 16 | 13, 15 | eleqtrdi 2843 |
. . . . . . 7
⊢
((Ran‘〈〈𝐶, 𝐷〉, 𝐸〉) ≠ ∅ →
〈〈𝐶, 𝐷〉, 𝐸〉 ∈ ((V × V) ×
V)) |
| 17 | | opelxp1 5694 |
. . . . . . 7
⊢
(〈〈𝐶,
𝐷〉, 𝐸〉 ∈ ((V × V) × V)
→ 〈𝐶, 𝐷〉 ∈ (V ×
V)) |
| 18 | | opelxp1 5694 |
. . . . . . 7
⊢
(〈𝐶, 𝐷〉 ∈ (V × V)
→ 𝐶 ∈
V) |
| 19 | 11, 16, 17, 18 | 4syl 19 |
. . . . . 6
⊢ ((𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) ≠ ∅ → 𝐶 ∈ V) |
| 20 | | opelxp2 5695 |
. . . . . . 7
⊢
(〈𝐶, 𝐷〉 ∈ (V × V)
→ 𝐷 ∈
V) |
| 21 | 11, 16, 17, 20 | 4syl 19 |
. . . . . 6
⊢ ((𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) ≠ ∅ → 𝐷 ∈ V) |
| 22 | | opelxp2 5695 |
. . . . . . 7
⊢
(〈〈𝐶,
𝐷〉, 𝐸〉 ∈ ((V × V) × V)
→ 𝐸 ∈
V) |
| 23 | 11, 16, 22 | 3syl 18 |
. . . . . 6
⊢ ((𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) ≠ ∅ → 𝐸 ∈ V) |
| 24 | | eqid 2734 |
. . . . . 6
⊢
(oppCat‘(𝐷
FuncCat 𝐸)) =
(oppCat‘(𝐷 FuncCat
𝐸)) |
| 25 | | eqid 2734 |
. . . . . 6
⊢
(oppCat‘(𝐶
FuncCat 𝐸)) =
(oppCat‘(𝐶 FuncCat
𝐸)) |
| 26 | 3, 4, 19, 21, 23, 24, 25 | ranfval 49352 |
. . . . 5
⊢ ((𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) ≠ ∅ → (〈𝐶, 𝐷〉Ran𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(〈𝐷, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥))) |
| 27 | 2, 26 | syl 17 |
. . . 4
⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) → (〈𝐶, 𝐷〉Ran𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(〈𝐷, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥))) |
| 28 | 27 | oveqd 7417 |
. . 3
⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) → (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) = (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(〈𝐷, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋)) |
| 29 | 1, 28 | eleqtrd 2835 |
. 2
⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) → 𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(〈𝐷, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋)) |
| 30 | | eqid 2734 |
. . 3
⊢ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(〈𝐷, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(〈𝐷, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥)) |
| 31 | 30 | elmpocl 7643 |
. 2
⊢ (𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(〈𝐷, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸))) |
| 32 | 29, 31 | syl 17 |
1
⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸))) |