Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranrcl Structured version   Visualization version   GIF version

Theorem ranrcl 49358
Description: Reverse closure for right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
ranrcl (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))

Proof of Theorem ranrcl
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) → 𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋))
2 ne0i 4314 . . . . 5 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) ≠ ∅)
3 eqid 2734 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
4 eqid 2734 . . . . . 6 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
5 df-ov 7403 . . . . . . . . . 10 (⟨𝐶, 𝐷⟩Ran𝐸) = (Ran‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩)
65eqeq1i 2739 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩Ran𝐸) = ∅ ↔ (Ran‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅)
7 oveq 7406 . . . . . . . . . 10 ((⟨𝐶, 𝐷⟩Ran𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) = (𝐹𝑋))
8 0ov 7437 . . . . . . . . . 10 (𝐹𝑋) = ∅
97, 8eqtrdi 2785 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩Ran𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) = ∅)
106, 9sylbir 235 . . . . . . . 8 ((Ran‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅ → (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) = ∅)
1110necon3i 2963 . . . . . . 7 ((𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) ≠ ∅ → (Ran‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅)
12 fvfundmfvn0 6916 . . . . . . . . 9 ((Ran‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Ran ∧ Fun (Ran ↾ {⟨⟨𝐶, 𝐷⟩, 𝐸⟩})))
1312simpld 494 . . . . . . . 8 ((Ran‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Ran)
14 ranfn 49348 . . . . . . . . 9 Ran Fn ((V × V) × V)
1514fndmi 6639 . . . . . . . 8 dom Ran = ((V × V) × V)
1613, 15eleqtrdi 2843 . . . . . . 7 ((Ran‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5694 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → ⟨𝐶, 𝐷⟩ ∈ (V × V))
18 opelxp1 5694 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐶 ∈ V)
1911, 16, 17, 184syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) ≠ ∅ → 𝐶 ∈ V)
20 opelxp2 5695 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐷 ∈ V)
2111, 16, 17, 204syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) ≠ ∅ → 𝐷 ∈ V)
22 opelxp2 5695 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2311, 16, 223syl 18 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) ≠ ∅ → 𝐸 ∈ V)
24 eqid 2734 . . . . . 6 (oppCat‘(𝐷 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐸))
25 eqid 2734 . . . . . 6 (oppCat‘(𝐶 FuncCat 𝐸)) = (oppCat‘(𝐶 FuncCat 𝐸))
263, 4, 19, 21, 23, 24, 25ranfval 49352 . . . . 5 ((𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) ≠ ∅ → (⟨𝐶, 𝐷⟩Ran𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥)))
272, 26syl 17 . . . 4 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) → (⟨𝐶, 𝐷⟩Ran𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥)))
2827oveqd 7417 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) = (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋))
291, 28eleqtrd 2835 . 2 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) → 𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋))
30 eqid 2734 . . 3 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥))
3130elmpocl 7643 . 2 (𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
3229, 31syl 17 1 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  Vcvv 3457  c0 4306  {csn 4599  cop 4605   × cxp 5650  dom cdm 5652  cres 5654  Fun wfun 6522  cfv 6528  (class class class)co 7400  cmpo 7402  oppCatcoppc 17710   Func cfunc 17854   FuncCat cfuc 17945  oppFunccoppf 48950  UPcup 48974   −∘F cprcof 49147  Rancran 49344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-ran 49346
This theorem is referenced by:  relran  49360  isran  49364  ranrcl2  49371  ranrcl3  49372
  Copyright terms: Public domain W3C validator