Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranrcl Structured version   Visualization version   GIF version

Theorem ranrcl 49611
Description: Reverse closure for right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
ranrcl (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))

Proof of Theorem ranrcl
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → 𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋))
2 ne0i 4292 . . . . 5 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅)
3 eqid 2729 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
4 eqid 2729 . . . . . 6 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
5 df-ov 7352 . . . . . . . . . 10 (⟨𝐶, 𝐷⟩ Ran 𝐸) = ( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩)
65eqeq1i 2734 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Ran 𝐸) = ∅ ↔ ( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅)
7 oveq 7355 . . . . . . . . . 10 ((⟨𝐶, 𝐷⟩ Ran 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = (𝐹𝑋))
8 0ov 7386 . . . . . . . . . 10 (𝐹𝑋) = ∅
97, 8eqtrdi 2780 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Ran 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = ∅)
106, 9sylbir 235 . . . . . . . 8 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = ∅)
1110necon3i 2957 . . . . . . 7 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → ( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅)
12 fvfundmfvn0 6863 . . . . . . . . 9 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Ran ∧ Fun ( Ran ↾ {⟨⟨𝐶, 𝐷⟩, 𝐸⟩})))
1312simpld 494 . . . . . . . 8 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Ran )
14 ranfn 49599 . . . . . . . . 9 Ran Fn ((V × V) × V)
1514fndmi 6586 . . . . . . . 8 dom Ran = ((V × V) × V)
1613, 15eleqtrdi 2838 . . . . . . 7 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5661 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → ⟨𝐶, 𝐷⟩ ∈ (V × V))
18 opelxp1 5661 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐶 ∈ V)
1911, 16, 17, 184syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → 𝐶 ∈ V)
20 opelxp2 5662 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐷 ∈ V)
2111, 16, 17, 204syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → 𝐷 ∈ V)
22 opelxp2 5662 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2311, 16, 223syl 18 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → 𝐸 ∈ V)
24 eqid 2729 . . . . . 6 (oppCat‘(𝐷 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐸))
25 eqid 2729 . . . . . 6 (oppCat‘(𝐶 FuncCat 𝐸)) = (oppCat‘(𝐶 FuncCat 𝐸))
263, 4, 19, 21, 23, 24, 25ranfval 49603 . . . . 5 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → (⟨𝐶, 𝐷⟩ Ran 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥)))
272, 26syl 17 . . . 4 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (⟨𝐶, 𝐷⟩ Ran 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥)))
2827oveqd 7366 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋))
291, 28eleqtrd 2830 . 2 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → 𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋))
30 eqid 2729 . . 3 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))
3130elmpocl 7590 . 2 (𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
3229, 31syl 17 1 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  c0 4284  {csn 4577  cop 4583   × cxp 5617  dom cdm 5619  cres 5621  Fun wfun 6476  cfv 6482  (class class class)co 7349  cmpo 7351  oppCatcoppc 17617   Func cfunc 17761   FuncCat cfuc 17852   oppFunc coppf 49111   UP cup 49162   −∘F cprcof 49362   Ran cran 49595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-ran 49597
This theorem is referenced by:  relran  49613  isran  49617  ranrcl2  49625  ranrcl3  49626
  Copyright terms: Public domain W3C validator