Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranrcl Structured version   Visualization version   GIF version

Theorem ranrcl 49601
Description: Reverse closure for right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
ranrcl (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))

Proof of Theorem ranrcl
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → 𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋))
2 ne0i 4306 . . . . 5 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅)
3 eqid 2730 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
4 eqid 2730 . . . . . 6 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
5 df-ov 7392 . . . . . . . . . 10 (⟨𝐶, 𝐷⟩ Ran 𝐸) = ( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩)
65eqeq1i 2735 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Ran 𝐸) = ∅ ↔ ( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅)
7 oveq 7395 . . . . . . . . . 10 ((⟨𝐶, 𝐷⟩ Ran 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = (𝐹𝑋))
8 0ov 7426 . . . . . . . . . 10 (𝐹𝑋) = ∅
97, 8eqtrdi 2781 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Ran 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = ∅)
106, 9sylbir 235 . . . . . . . 8 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = ∅)
1110necon3i 2958 . . . . . . 7 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → ( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅)
12 fvfundmfvn0 6903 . . . . . . . . 9 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Ran ∧ Fun ( Ran ↾ {⟨⟨𝐶, 𝐷⟩, 𝐸⟩})))
1312simpld 494 . . . . . . . 8 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Ran )
14 ranfn 49589 . . . . . . . . 9 Ran Fn ((V × V) × V)
1514fndmi 6624 . . . . . . . 8 dom Ran = ((V × V) × V)
1613, 15eleqtrdi 2839 . . . . . . 7 (( Ran ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5682 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → ⟨𝐶, 𝐷⟩ ∈ (V × V))
18 opelxp1 5682 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐶 ∈ V)
1911, 16, 17, 184syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → 𝐶 ∈ V)
20 opelxp2 5683 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐷 ∈ V)
2111, 16, 17, 204syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → 𝐷 ∈ V)
22 opelxp2 5683 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2311, 16, 223syl 18 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → 𝐸 ∈ V)
24 eqid 2730 . . . . . 6 (oppCat‘(𝐷 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐸))
25 eqid 2730 . . . . . 6 (oppCat‘(𝐶 FuncCat 𝐸)) = (oppCat‘(𝐶 FuncCat 𝐸))
263, 4, 19, 21, 23, 24, 25ranfval 49593 . . . . 5 ((𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) ≠ ∅ → (⟨𝐶, 𝐷⟩ Ran 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥)))
272, 26syl 17 . . . 4 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (⟨𝐶, 𝐷⟩ Ran 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥)))
2827oveqd 7406 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋))
291, 28eleqtrd 2831 . 2 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → 𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋))
30 eqid 2730 . . 3 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))
3130elmpocl 7632 . 2 (𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘(𝐶 FuncCat 𝐸)))𝑥))𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
3229, 31syl 17 1 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4298  {csn 4591  cop 4597   × cxp 5638  dom cdm 5640  cres 5642  Fun wfun 6507  cfv 6513  (class class class)co 7389  cmpo 7391  oppCatcoppc 17678   Func cfunc 17822   FuncCat cfuc 17913   oppFunc coppf 49101   UP cup 49152   −∘F cprcof 49352   Ran cran 49585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-ran 49587
This theorem is referenced by:  relran  49603  isran  49607  ranrcl2  49615  ranrcl3  49616
  Copyright terms: Public domain W3C validator