Step | Hyp | Ref
| Expression |
1 | | dvaddf.s |
. . . 4
β’ (π β π β {β, β}) |
2 | | dvaddf.df |
. . . . 5
β’ (π β dom (π D πΉ) = π) |
3 | | dvbsss 25653 |
. . . . 5
β’ dom
(π D πΉ) β π |
4 | 2, 3 | eqsstrrdi 4038 |
. . . 4
β’ (π β π β π) |
5 | 1, 4 | ssexd 5325 |
. . 3
β’ (π β π β V) |
6 | | dvfg 25657 |
. . . . . 6
β’ (π β {β, β}
β (π D πΉ):dom (π D πΉ)βΆβ) |
7 | 1, 6 | syl 17 |
. . . . 5
β’ (π β (π D πΉ):dom (π D πΉ)βΆβ) |
8 | 2 | feq2d 6704 |
. . . . 5
β’ (π β ((π D πΉ):dom (π D πΉ)βΆβ β (π D πΉ):πβΆβ)) |
9 | 7, 8 | mpbid 231 |
. . . 4
β’ (π β (π D πΉ):πβΆβ) |
10 | 9 | ffnd 6719 |
. . 3
β’ (π β (π D πΉ) Fn π) |
11 | | dvfg 25657 |
. . . . . 6
β’ (π β {β, β}
β (π D πΊ):dom (π D πΊ)βΆβ) |
12 | 1, 11 | syl 17 |
. . . . 5
β’ (π β (π D πΊ):dom (π D πΊ)βΆβ) |
13 | | dvaddf.dg |
. . . . . 6
β’ (π β dom (π D πΊ) = π) |
14 | 13 | feq2d 6704 |
. . . . 5
β’ (π β ((π D πΊ):dom (π D πΊ)βΆβ β (π D πΊ):πβΆβ)) |
15 | 12, 14 | mpbid 231 |
. . . 4
β’ (π β (π D πΊ):πβΆβ) |
16 | 15 | ffnd 6719 |
. . 3
β’ (π β (π D πΊ) Fn π) |
17 | | dvfg 25657 |
. . . . . 6
β’ (π β {β, β}
β (π D (πΉ βf + πΊ)):dom (π D (πΉ βf + πΊ))βΆβ) |
18 | 1, 17 | syl 17 |
. . . . 5
β’ (π β (π D (πΉ βf + πΊ)):dom (π D (πΉ βf + πΊ))βΆβ) |
19 | | recnprss 25655 |
. . . . . . . . 9
β’ (π β {β, β}
β π β
β) |
20 | 1, 19 | syl 17 |
. . . . . . . 8
β’ (π β π β β) |
21 | | addcl 11196 |
. . . . . . . . . 10
β’ ((π₯ β β β§ π¦ β β) β (π₯ + π¦) β β) |
22 | 21 | adantl 480 |
. . . . . . . . 9
β’ ((π β§ (π₯ β β β§ π¦ β β)) β (π₯ + π¦) β β) |
23 | | dvaddf.f |
. . . . . . . . 9
β’ (π β πΉ:πβΆβ) |
24 | | dvaddf.g |
. . . . . . . . 9
β’ (π β πΊ:πβΆβ) |
25 | | inidm 4219 |
. . . . . . . . 9
β’ (π β© π) = π |
26 | 22, 23, 24, 5, 5, 25 | off 7692 |
. . . . . . . 8
β’ (π β (πΉ βf + πΊ):πβΆβ) |
27 | 20, 26, 4 | dvbss 25652 |
. . . . . . 7
β’ (π β dom (π D (πΉ βf + πΊ)) β π) |
28 | 23 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β πΉ:πβΆβ) |
29 | 4 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β π β π) |
30 | 24 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β πΊ:πβΆβ) |
31 | 20 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β π β β) |
32 | | fvexd 6907 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β ((π D πΉ)βπ₯) β V) |
33 | | fvexd 6907 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β ((π D πΊ)βπ₯) β V) |
34 | 2 | eleq2d 2817 |
. . . . . . . . . . 11
β’ (π β (π₯ β dom (π D πΉ) β π₯ β π)) |
35 | 34 | biimpar 476 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π) β π₯ β dom (π D πΉ)) |
36 | 1 | adantr 479 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β π) β π β {β, β}) |
37 | | ffun 6721 |
. . . . . . . . . . 11
β’ ((π D πΉ):dom (π D πΉ)βΆβ β Fun (π D πΉ)) |
38 | | funfvbrb 7053 |
. . . . . . . . . . 11
β’ (Fun
(π D πΉ) β (π₯ β dom (π D πΉ) β π₯(π D πΉ)((π D πΉ)βπ₯))) |
39 | 36, 6, 37, 38 | 4syl 19 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π) β (π₯ β dom (π D πΉ) β π₯(π D πΉ)((π D πΉ)βπ₯))) |
40 | 35, 39 | mpbid 231 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β π₯(π D πΉ)((π D πΉ)βπ₯)) |
41 | 13 | eleq2d 2817 |
. . . . . . . . . . 11
β’ (π β (π₯ β dom (π D πΊ) β π₯ β π)) |
42 | 41 | biimpar 476 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π) β π₯ β dom (π D πΊ)) |
43 | | ffun 6721 |
. . . . . . . . . . 11
β’ ((π D πΊ):dom (π D πΊ)βΆβ β Fun (π D πΊ)) |
44 | | funfvbrb 7053 |
. . . . . . . . . . 11
β’ (Fun
(π D πΊ) β (π₯ β dom (π D πΊ) β π₯(π D πΊ)((π D πΊ)βπ₯))) |
45 | 36, 11, 43, 44 | 4syl 19 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π) β (π₯ β dom (π D πΊ) β π₯(π D πΊ)((π D πΊ)βπ₯))) |
46 | 42, 45 | mpbid 231 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β π₯(π D πΊ)((π D πΊ)βπ₯)) |
47 | | eqid 2730 |
. . . . . . . . 9
β’
(TopOpenββfld) =
(TopOpenββfld) |
48 | 28, 29, 30, 29, 31, 32, 33, 40, 46, 47 | dvaddbr 25689 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π₯(π D (πΉ βf + πΊ))(((π D πΉ)βπ₯) + ((π D πΊ)βπ₯))) |
49 | | reldv 25621 |
. . . . . . . . 9
β’ Rel
(π D (πΉ βf + πΊ)) |
50 | 49 | releldmi 5948 |
. . . . . . . 8
β’ (π₯(π D (πΉ βf + πΊ))(((π D πΉ)βπ₯) + ((π D πΊ)βπ₯)) β π₯ β dom (π D (πΉ βf + πΊ))) |
51 | 48, 50 | syl 17 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π₯ β dom (π D (πΉ βf + πΊ))) |
52 | 27, 51 | eqelssd 4004 |
. . . . . 6
β’ (π β dom (π D (πΉ βf + πΊ)) = π) |
53 | 52 | feq2d 6704 |
. . . . 5
β’ (π β ((π D (πΉ βf + πΊ)):dom (π D (πΉ βf + πΊ))βΆβ β (π D (πΉ βf + πΊ)):πβΆβ)) |
54 | 18, 53 | mpbid 231 |
. . . 4
β’ (π β (π D (πΉ βf + πΊ)):πβΆβ) |
55 | 54 | ffnd 6719 |
. . 3
β’ (π β (π D (πΉ βf + πΊ)) Fn π) |
56 | | eqidd 2731 |
. . 3
β’ ((π β§ π₯ β π) β ((π D πΉ)βπ₯) = ((π D πΉ)βπ₯)) |
57 | | eqidd 2731 |
. . 3
β’ ((π β§ π₯ β π) β ((π D πΊ)βπ₯) = ((π D πΊ)βπ₯)) |
58 | 28, 29, 30, 29, 36, 35, 42 | dvadd 25691 |
. . . 4
β’ ((π β§ π₯ β π) β ((π D (πΉ βf + πΊ))βπ₯) = (((π D πΉ)βπ₯) + ((π D πΊ)βπ₯))) |
59 | 58 | eqcomd 2736 |
. . 3
β’ ((π β§ π₯ β π) β (((π D πΉ)βπ₯) + ((π D πΊ)βπ₯)) = ((π D (πΉ βf + πΊ))βπ₯)) |
60 | 5, 10, 16, 55, 56, 57, 59 | offveq 7698 |
. 2
β’ (π β ((π D πΉ) βf + (π D πΊ)) = (π D (πΉ βf + πΊ))) |
61 | 60 | eqcomd 2736 |
1
β’ (π β (π D (πΉ βf + πΊ)) = ((π D πΉ) βf + (π D πΊ))) |