MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvaddf Structured version   Visualization version   GIF version

Theorem dvaddf 24531
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvaddf (𝜑 → (𝑆 D (𝐹f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)))

Proof of Theorem dvaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvaddf.df . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
3 dvbsss 24492 . . . . 5 dom (𝑆 D 𝐹) ⊆ 𝑆
42, 3eqsstrrdi 4020 . . . 4 (𝜑𝑋𝑆)
51, 4ssexd 5219 . . 3 (𝜑𝑋 ∈ V)
6 dvfg 24496 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
71, 6syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
82feq2d 6493 . . . . 5 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
97, 8mpbid 234 . . . 4 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
109ffnd 6508 . . 3 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
11 dvfg 24496 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
121, 11syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
13 dvaddf.dg . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1413feq2d 6493 . . . . 5 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
1512, 14mpbid 234 . . . 4 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
1615ffnd 6508 . . 3 (𝜑 → (𝑆 D 𝐺) Fn 𝑋)
17 dvfg 24496 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹f + 𝐺)):dom (𝑆 D (𝐹f + 𝐺))⟶ℂ)
181, 17syl 17 . . . . 5 (𝜑 → (𝑆 D (𝐹f + 𝐺)):dom (𝑆 D (𝐹f + 𝐺))⟶ℂ)
19 recnprss 24494 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
201, 19syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
21 addcl 10611 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
2221adantl 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
23 dvaddf.f . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℂ)
24 dvaddf.g . . . . . . . . 9 (𝜑𝐺:𝑋⟶ℂ)
25 inidm 4193 . . . . . . . . 9 (𝑋𝑋) = 𝑋
2622, 23, 24, 5, 5, 25off 7416 . . . . . . . 8 (𝜑 → (𝐹f + 𝐺):𝑋⟶ℂ)
2720, 26, 4dvbss 24491 . . . . . . 7 (𝜑 → dom (𝑆 D (𝐹f + 𝐺)) ⊆ 𝑋)
2823adantr 483 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
294adantr 483 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑋𝑆)
3024adantr 483 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
3120adantr 483 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
32 fvexd 6678 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
33 fvexd 6678 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V)
342eleq2d 2896 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
3534biimpar 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
361adantr 483 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
37 ffun 6510 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
38 funfvbrb 6814 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3936, 6, 37, 384syl 19 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4035, 39mpbid 234 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
4113eleq2d 2896 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
4241biimpar 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
43 ffun 6510 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
44 funfvbrb 6814 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4536, 11, 43, 444syl 19 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4642, 45mpbid 234 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
47 eqid 2819 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4828, 29, 30, 29, 31, 32, 33, 40, 46, 47dvaddbr 24527 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
49 reldv 24460 . . . . . . . . 9 Rel (𝑆 D (𝐹f + 𝐺))
5049releldmi 5811 . . . . . . . 8 (𝑥(𝑆 D (𝐹f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑆 D (𝐹f + 𝐺)))
5148, 50syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹f + 𝐺)))
5227, 51eqelssd 3986 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹f + 𝐺)) = 𝑋)
5352feq2d 6493 . . . . 5 (𝜑 → ((𝑆 D (𝐹f + 𝐺)):dom (𝑆 D (𝐹f + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹f + 𝐺)):𝑋⟶ℂ))
5418, 53mpbid 234 . . . 4 (𝜑 → (𝑆 D (𝐹f + 𝐺)):𝑋⟶ℂ)
5554ffnd 6508 . . 3 (𝜑 → (𝑆 D (𝐹f + 𝐺)) Fn 𝑋)
56 eqidd 2820 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
57 eqidd 2820 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥))
5828, 29, 30, 29, 36, 35, 42dvadd 24529 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹f + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
5958eqcomd 2825 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹f + 𝐺))‘𝑥))
605, 10, 16, 55, 56, 57, 59offveq 7422 . 2 (𝜑 → ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)) = (𝑆 D (𝐹f + 𝐺)))
6160eqcomd 2825 1 (𝜑 → (𝑆 D (𝐹f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  Vcvv 3493  wss 3934  {cpr 4561   class class class wbr 5057  dom cdm 5548  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7148  f cof 7399  cc 10527  cr 10528   + caddc 10532  TopOpenctopn 16687  fldccnfld 20537   D cdv 24453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-icc 12737  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-limc 24456  df-dv 24457
This theorem is referenced by:  dvmptadd  24549
  Copyright terms: Public domain W3C validator