MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvaddf Structured version   Visualization version   GIF version

Theorem dvaddf 24545
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvaddf (𝜑 → (𝑆 D (𝐹f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)))

Proof of Theorem dvaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvaddf.df . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
3 dvbsss 24505 . . . . 5 dom (𝑆 D 𝐹) ⊆ 𝑆
42, 3eqsstrrdi 3970 . . . 4 (𝜑𝑋𝑆)
51, 4ssexd 5192 . . 3 (𝜑𝑋 ∈ V)
6 dvfg 24509 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
71, 6syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
82feq2d 6473 . . . . 5 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
97, 8mpbid 235 . . . 4 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
109ffnd 6488 . . 3 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
11 dvfg 24509 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
121, 11syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
13 dvaddf.dg . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1413feq2d 6473 . . . . 5 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
1512, 14mpbid 235 . . . 4 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
1615ffnd 6488 . . 3 (𝜑 → (𝑆 D 𝐺) Fn 𝑋)
17 dvfg 24509 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹f + 𝐺)):dom (𝑆 D (𝐹f + 𝐺))⟶ℂ)
181, 17syl 17 . . . . 5 (𝜑 → (𝑆 D (𝐹f + 𝐺)):dom (𝑆 D (𝐹f + 𝐺))⟶ℂ)
19 recnprss 24507 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
201, 19syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
21 addcl 10608 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
2221adantl 485 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
23 dvaddf.f . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℂ)
24 dvaddf.g . . . . . . . . 9 (𝜑𝐺:𝑋⟶ℂ)
25 inidm 4145 . . . . . . . . 9 (𝑋𝑋) = 𝑋
2622, 23, 24, 5, 5, 25off 7404 . . . . . . . 8 (𝜑 → (𝐹f + 𝐺):𝑋⟶ℂ)
2720, 26, 4dvbss 24504 . . . . . . 7 (𝜑 → dom (𝑆 D (𝐹f + 𝐺)) ⊆ 𝑋)
2823adantr 484 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
294adantr 484 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑋𝑆)
3024adantr 484 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
3120adantr 484 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
32 fvexd 6660 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
33 fvexd 6660 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V)
342eleq2d 2875 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
3534biimpar 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
361adantr 484 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
37 ffun 6490 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
38 funfvbrb 6798 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3936, 6, 37, 384syl 19 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4035, 39mpbid 235 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
4113eleq2d 2875 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
4241biimpar 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
43 ffun 6490 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
44 funfvbrb 6798 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4536, 11, 43, 444syl 19 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4642, 45mpbid 235 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
47 eqid 2798 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4828, 29, 30, 29, 31, 32, 33, 40, 46, 47dvaddbr 24541 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
49 reldv 24473 . . . . . . . . 9 Rel (𝑆 D (𝐹f + 𝐺))
5049releldmi 5782 . . . . . . . 8 (𝑥(𝑆 D (𝐹f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑆 D (𝐹f + 𝐺)))
5148, 50syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹f + 𝐺)))
5227, 51eqelssd 3936 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹f + 𝐺)) = 𝑋)
5352feq2d 6473 . . . . 5 (𝜑 → ((𝑆 D (𝐹f + 𝐺)):dom (𝑆 D (𝐹f + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹f + 𝐺)):𝑋⟶ℂ))
5418, 53mpbid 235 . . . 4 (𝜑 → (𝑆 D (𝐹f + 𝐺)):𝑋⟶ℂ)
5554ffnd 6488 . . 3 (𝜑 → (𝑆 D (𝐹f + 𝐺)) Fn 𝑋)
56 eqidd 2799 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
57 eqidd 2799 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥))
5828, 29, 30, 29, 36, 35, 42dvadd 24543 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹f + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
5958eqcomd 2804 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹f + 𝐺))‘𝑥))
605, 10, 16, 55, 56, 57, 59offveq 7410 . 2 (𝜑 → ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)) = (𝑆 D (𝐹f + 𝐺)))
6160eqcomd 2804 1 (𝜑 → (𝑆 D (𝐹f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  {cpr 4527   class class class wbr 5030  dom cdm 5519  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  cc 10524  cr 10525   + caddc 10529  TopOpenctopn 16687  fldccnfld 20091   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-limc 24469  df-dv 24470
This theorem is referenced by:  dvmptadd  24563
  Copyright terms: Public domain W3C validator