| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvaddf | Structured version Visualization version GIF version | ||
| Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvaddf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvaddf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvaddf.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| dvaddf.df | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| dvaddf.dg | ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| Ref | Expression |
|---|---|
| dvaddf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvaddf.df | . . . . 5 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
| 3 | dvbsss 25779 | . . . . 5 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
| 4 | 2, 3 | eqsstrrdi 3989 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 5 | 1, 4 | ssexd 5274 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
| 6 | dvfg 25783 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 8 | 2 | feq2d 6654 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 9 | 7, 8 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 10 | 9 | ffnd 6671 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐹) Fn 𝑋) |
| 11 | dvfg 25783 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
| 12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 13 | dvaddf.dg | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) | |
| 14 | 13 | feq2d 6654 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
| 15 | 12, 14 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
| 16 | 15 | ffnd 6671 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐺) Fn 𝑋) |
| 17 | dvfg 25783 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ) | |
| 18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ) |
| 19 | recnprss 25781 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 20 | 1, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 21 | addcl 11126 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
| 22 | 21 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
| 23 | dvaddf.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 24 | dvaddf.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
| 25 | inidm 4186 | . . . . . . . . 9 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
| 26 | 22, 23, 24, 5, 5, 25 | off 7651 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ∘f + 𝐺):𝑋⟶ℂ) |
| 27 | 20, 26, 4 | dvbss 25778 | . . . . . . 7 ⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f + 𝐺)) ⊆ 𝑋) |
| 28 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶ℂ) |
| 29 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ 𝑆) |
| 30 | 24 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) |
| 31 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ ℂ) |
| 32 | 2 | eleq2d 2814 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥 ∈ 𝑋)) |
| 33 | 32 | biimpar 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
| 34 | 1 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ {ℝ, ℂ}) |
| 35 | ffun 6673 | . . . . . . . . . . 11 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
| 36 | funfvbrb 7005 | . . . . . . . . . . 11 ⊢ (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) | |
| 37 | 34, 6, 35, 36 | 4syl 19 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
| 38 | 33, 37 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)) |
| 39 | 13 | eleq2d 2814 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥 ∈ 𝑋)) |
| 40 | 39 | biimpar 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺)) |
| 41 | ffun 6673 | . . . . . . . . . . 11 ⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) | |
| 42 | funfvbrb 7005 | . . . . . . . . . . 11 ⊢ (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) | |
| 43 | 34, 11, 41, 42 | 4syl 19 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
| 44 | 40, 43 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)) |
| 45 | eqid 2729 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 46 | 28, 29, 30, 29, 31, 38, 44, 45 | dvaddbr 25816 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D (𝐹 ∘f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
| 47 | reldv 25747 | . . . . . . . . 9 ⊢ Rel (𝑆 D (𝐹 ∘f + 𝐺)) | |
| 48 | 47 | releldmi 5901 | . . . . . . . 8 ⊢ (𝑥(𝑆 D (𝐹 ∘f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f + 𝐺))) |
| 49 | 46, 48 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f + 𝐺))) |
| 50 | 27, 49 | eqelssd 3965 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f + 𝐺)) = 𝑋) |
| 51 | 50 | feq2d 6654 | . . . . 5 ⊢ (𝜑 → ((𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹 ∘f + 𝐺)):𝑋⟶ℂ)) |
| 52 | 18, 51 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)):𝑋⟶ℂ) |
| 53 | 52 | ffnd 6671 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) Fn 𝑋) |
| 54 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥)) | |
| 55 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥)) | |
| 56 | 28, 29, 30, 29, 34, 33, 40 | dvadd 25819 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D (𝐹 ∘f + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
| 57 | 56 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹 ∘f + 𝐺))‘𝑥)) |
| 58 | 5, 10, 16, 53, 54, 55, 57 | offveq 7659 | . 2 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∘f + 𝐺))) |
| 59 | 58 | eqcomd 2735 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 {cpr 4587 class class class wbr 5102 dom cdm 5631 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 ℂcc 11042 ℝcr 11043 + caddc 11047 TopOpenctopn 17360 ℂfldccnfld 21240 D cdv 25740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-haus 23178 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-tms 24186 df-limc 25743 df-dv 25744 |
| This theorem is referenced by: dvmptadd 25840 |
| Copyright terms: Public domain | W3C validator |