| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvaddf | Structured version Visualization version GIF version | ||
| Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvaddf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvaddf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvaddf.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| dvaddf.df | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| dvaddf.dg | ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| Ref | Expression |
|---|---|
| dvaddf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvaddf.df | . . . . 5 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
| 3 | dvbsss 25825 | . . . . 5 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
| 4 | 2, 3 | eqsstrrdi 3975 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 5 | 1, 4 | ssexd 5257 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
| 6 | dvfg 25829 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 8 | 2 | feq2d 6630 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 9 | 7, 8 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 10 | 9 | ffnd 6647 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐹) Fn 𝑋) |
| 11 | dvfg 25829 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
| 12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 13 | dvaddf.dg | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) | |
| 14 | 13 | feq2d 6630 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
| 15 | 12, 14 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
| 16 | 15 | ffnd 6647 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐺) Fn 𝑋) |
| 17 | dvfg 25829 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ) | |
| 18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ) |
| 19 | recnprss 25827 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 20 | 1, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 21 | addcl 11083 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
| 22 | 21 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
| 23 | dvaddf.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 24 | dvaddf.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
| 25 | inidm 4172 | . . . . . . . . 9 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
| 26 | 22, 23, 24, 5, 5, 25 | off 7623 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ∘f + 𝐺):𝑋⟶ℂ) |
| 27 | 20, 26, 4 | dvbss 25824 | . . . . . . 7 ⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f + 𝐺)) ⊆ 𝑋) |
| 28 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶ℂ) |
| 29 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ 𝑆) |
| 30 | 24 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) |
| 31 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ ℂ) |
| 32 | 2 | eleq2d 2817 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥 ∈ 𝑋)) |
| 33 | 32 | biimpar 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
| 34 | 1 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ {ℝ, ℂ}) |
| 35 | ffun 6649 | . . . . . . . . . . 11 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
| 36 | funfvbrb 6979 | . . . . . . . . . . 11 ⊢ (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) | |
| 37 | 34, 6, 35, 36 | 4syl 19 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
| 38 | 33, 37 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)) |
| 39 | 13 | eleq2d 2817 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥 ∈ 𝑋)) |
| 40 | 39 | biimpar 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺)) |
| 41 | ffun 6649 | . . . . . . . . . . 11 ⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) | |
| 42 | funfvbrb 6979 | . . . . . . . . . . 11 ⊢ (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) | |
| 43 | 34, 11, 41, 42 | 4syl 19 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
| 44 | 40, 43 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)) |
| 45 | eqid 2731 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 46 | 28, 29, 30, 29, 31, 38, 44, 45 | dvaddbr 25862 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D (𝐹 ∘f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
| 47 | reldv 25793 | . . . . . . . . 9 ⊢ Rel (𝑆 D (𝐹 ∘f + 𝐺)) | |
| 48 | 47 | releldmi 5883 | . . . . . . . 8 ⊢ (𝑥(𝑆 D (𝐹 ∘f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f + 𝐺))) |
| 49 | 46, 48 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f + 𝐺))) |
| 50 | 27, 49 | eqelssd 3951 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f + 𝐺)) = 𝑋) |
| 51 | 50 | feq2d 6630 | . . . . 5 ⊢ (𝜑 → ((𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹 ∘f + 𝐺)):𝑋⟶ℂ)) |
| 52 | 18, 51 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)):𝑋⟶ℂ) |
| 53 | 52 | ffnd 6647 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) Fn 𝑋) |
| 54 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥)) | |
| 55 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥)) | |
| 56 | 28, 29, 30, 29, 34, 33, 40 | dvadd 25865 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D (𝐹 ∘f + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
| 57 | 56 | eqcomd 2737 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹 ∘f + 𝐺))‘𝑥)) |
| 58 | 5, 10, 16, 53, 54, 55, 57 | offveq 7631 | . 2 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∘f + 𝐺))) |
| 59 | 58 | eqcomd 2737 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 {cpr 4573 class class class wbr 5086 dom cdm 5611 Fun wfun 6470 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ℂcc 10999 ℝcr 11000 + caddc 11004 TopOpenctopn 17320 ℂfldccnfld 21286 D cdv 25786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-icc 13247 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-limc 25789 df-dv 25790 |
| This theorem is referenced by: dvmptadd 25886 |
| Copyright terms: Public domain | W3C validator |