Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvaddf | Structured version Visualization version GIF version |
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvaddf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvaddf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvaddf.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
dvaddf.df | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
dvaddf.dg | ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
Ref | Expression |
---|---|
dvaddf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvaddf.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvaddf.df | . . . . 5 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
3 | dvbsss 24971 | . . . . 5 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
4 | 2, 3 | eqsstrrdi 3972 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
5 | 1, 4 | ssexd 5243 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
6 | dvfg 24975 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
8 | 2 | feq2d 6570 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
9 | 7, 8 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
10 | 9 | ffnd 6585 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐹) Fn 𝑋) |
11 | dvfg 24975 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
13 | dvaddf.dg | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) | |
14 | 13 | feq2d 6570 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
15 | 12, 14 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
16 | 15 | ffnd 6585 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐺) Fn 𝑋) |
17 | dvfg 24975 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ) | |
18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ) |
19 | recnprss 24973 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
20 | 1, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
21 | addcl 10884 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
22 | 21 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
23 | dvaddf.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
24 | dvaddf.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
25 | inidm 4149 | . . . . . . . . 9 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
26 | 22, 23, 24, 5, 5, 25 | off 7529 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ∘f + 𝐺):𝑋⟶ℂ) |
27 | 20, 26, 4 | dvbss 24970 | . . . . . . 7 ⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f + 𝐺)) ⊆ 𝑋) |
28 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶ℂ) |
29 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ 𝑆) |
30 | 24 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) |
31 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ ℂ) |
32 | fvexd 6771 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V) | |
33 | fvexd 6771 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V) | |
34 | 2 | eleq2d 2824 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥 ∈ 𝑋)) |
35 | 34 | biimpar 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
36 | 1 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ {ℝ, ℂ}) |
37 | ffun 6587 | . . . . . . . . . . 11 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
38 | funfvbrb 6910 | . . . . . . . . . . 11 ⊢ (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) | |
39 | 36, 6, 37, 38 | 4syl 19 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
40 | 35, 39 | mpbid 231 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)) |
41 | 13 | eleq2d 2824 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥 ∈ 𝑋)) |
42 | 41 | biimpar 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺)) |
43 | ffun 6587 | . . . . . . . . . . 11 ⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) | |
44 | funfvbrb 6910 | . . . . . . . . . . 11 ⊢ (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) | |
45 | 36, 11, 43, 44 | 4syl 19 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
46 | 42, 45 | mpbid 231 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)) |
47 | eqid 2738 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
48 | 28, 29, 30, 29, 31, 32, 33, 40, 46, 47 | dvaddbr 25007 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D (𝐹 ∘f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
49 | reldv 24939 | . . . . . . . . 9 ⊢ Rel (𝑆 D (𝐹 ∘f + 𝐺)) | |
50 | 49 | releldmi 5846 | . . . . . . . 8 ⊢ (𝑥(𝑆 D (𝐹 ∘f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f + 𝐺))) |
51 | 48, 50 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f + 𝐺))) |
52 | 27, 51 | eqelssd 3938 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f + 𝐺)) = 𝑋) |
53 | 52 | feq2d 6570 | . . . . 5 ⊢ (𝜑 → ((𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹 ∘f + 𝐺)):𝑋⟶ℂ)) |
54 | 18, 53 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)):𝑋⟶ℂ) |
55 | 54 | ffnd 6585 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) Fn 𝑋) |
56 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥)) | |
57 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥)) | |
58 | 28, 29, 30, 29, 36, 35, 42 | dvadd 25009 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D (𝐹 ∘f + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
59 | 58 | eqcomd 2744 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹 ∘f + 𝐺))‘𝑥)) |
60 | 5, 10, 16, 55, 56, 57, 59 | offveq 7535 | . 2 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∘f + 𝐺))) |
61 | 60 | eqcomd 2744 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {cpr 4560 class class class wbr 5070 dom cdm 5580 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 ℝcr 10801 + caddc 10805 TopOpenctopn 17049 ℂfldccnfld 20510 D cdv 24932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-limc 24935 df-dv 24936 |
This theorem is referenced by: dvmptadd 25029 |
Copyright terms: Public domain | W3C validator |