Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvaddf | Structured version Visualization version GIF version |
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvaddf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvaddf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvaddf.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
dvaddf.df | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
dvaddf.dg | ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
Ref | Expression |
---|---|
dvaddf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvaddf.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvaddf.df | . . . . 5 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
3 | dvbsss 25047 | . . . . 5 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
4 | 2, 3 | eqsstrrdi 3980 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
5 | 1, 4 | ssexd 5251 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
6 | dvfg 25051 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
8 | 2 | feq2d 6582 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
9 | 7, 8 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
10 | 9 | ffnd 6597 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐹) Fn 𝑋) |
11 | dvfg 25051 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
13 | dvaddf.dg | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) | |
14 | 13 | feq2d 6582 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
15 | 12, 14 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
16 | 15 | ffnd 6597 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐺) Fn 𝑋) |
17 | dvfg 25051 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ) | |
18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ) |
19 | recnprss 25049 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
20 | 1, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
21 | addcl 10937 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
22 | 21 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
23 | dvaddf.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
24 | dvaddf.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
25 | inidm 4157 | . . . . . . . . 9 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
26 | 22, 23, 24, 5, 5, 25 | off 7542 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ∘f + 𝐺):𝑋⟶ℂ) |
27 | 20, 26, 4 | dvbss 25046 | . . . . . . 7 ⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f + 𝐺)) ⊆ 𝑋) |
28 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶ℂ) |
29 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ 𝑆) |
30 | 24 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) |
31 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ ℂ) |
32 | fvexd 6783 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V) | |
33 | fvexd 6783 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V) | |
34 | 2 | eleq2d 2825 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥 ∈ 𝑋)) |
35 | 34 | biimpar 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
36 | 1 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ {ℝ, ℂ}) |
37 | ffun 6599 | . . . . . . . . . . 11 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
38 | funfvbrb 6922 | . . . . . . . . . . 11 ⊢ (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) | |
39 | 36, 6, 37, 38 | 4syl 19 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
40 | 35, 39 | mpbid 231 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)) |
41 | 13 | eleq2d 2825 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥 ∈ 𝑋)) |
42 | 41 | biimpar 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺)) |
43 | ffun 6599 | . . . . . . . . . . 11 ⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) | |
44 | funfvbrb 6922 | . . . . . . . . . . 11 ⊢ (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) | |
45 | 36, 11, 43, 44 | 4syl 19 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
46 | 42, 45 | mpbid 231 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)) |
47 | eqid 2739 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
48 | 28, 29, 30, 29, 31, 32, 33, 40, 46, 47 | dvaddbr 25083 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D (𝐹 ∘f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
49 | reldv 25015 | . . . . . . . . 9 ⊢ Rel (𝑆 D (𝐹 ∘f + 𝐺)) | |
50 | 49 | releldmi 5854 | . . . . . . . 8 ⊢ (𝑥(𝑆 D (𝐹 ∘f + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f + 𝐺))) |
51 | 48, 50 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f + 𝐺))) |
52 | 27, 51 | eqelssd 3946 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f + 𝐺)) = 𝑋) |
53 | 52 | feq2d 6582 | . . . . 5 ⊢ (𝜑 → ((𝑆 D (𝐹 ∘f + 𝐺)):dom (𝑆 D (𝐹 ∘f + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹 ∘f + 𝐺)):𝑋⟶ℂ)) |
54 | 18, 53 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)):𝑋⟶ℂ) |
55 | 54 | ffnd 6597 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) Fn 𝑋) |
56 | eqidd 2740 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥)) | |
57 | eqidd 2740 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥)) | |
58 | 28, 29, 30, 29, 36, 35, 42 | dvadd 25085 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D (𝐹 ∘f + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
59 | 58 | eqcomd 2745 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹 ∘f + 𝐺))‘𝑥)) |
60 | 5, 10, 16, 55, 56, 57, 59 | offveq 7548 | . 2 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∘f + 𝐺))) |
61 | 60 | eqcomd 2745 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f + 𝐺)) = ((𝑆 D 𝐹) ∘f + (𝑆 D 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 {cpr 4568 class class class wbr 5078 dom cdm 5588 Fun wfun 6424 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ∘f cof 7522 ℂcc 10853 ℝcr 10854 + caddc 10858 TopOpenctopn 17113 ℂfldccnfld 20578 D cdv 25008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-fi 9131 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-icc 13068 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-hom 16967 df-cco 16968 df-rest 17114 df-topn 17115 df-0g 17133 df-gsum 17134 df-topgen 17135 df-pt 17136 df-prds 17139 df-xrs 17194 df-qtop 17199 df-imas 17200 df-xps 17202 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-mulg 18682 df-cntz 18904 df-cmn 19369 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-fbas 20575 df-fg 20576 df-cnfld 20579 df-top 22024 df-topon 22041 df-topsp 22063 df-bases 22077 df-cld 22151 df-ntr 22152 df-cls 22153 df-nei 22230 df-lp 22268 df-perf 22269 df-cn 22359 df-cnp 22360 df-haus 22447 df-tx 22694 df-hmeo 22887 df-fil 22978 df-fm 23070 df-flim 23071 df-flf 23072 df-xms 23454 df-ms 23455 df-tms 23456 df-limc 25011 df-dv 25012 |
This theorem is referenced by: dvmptadd 25105 |
Copyright terms: Public domain | W3C validator |