![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvcnv | Structured version Visualization version GIF version |
Description: A weak version of dvcnvre 26037, valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
Ref | Expression |
---|---|
dvcnv.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
dvcnv.k | ⊢ 𝐾 = (𝐽 ↾t 𝑆) |
dvcnv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvcnv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
dvcnv.f | ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) |
dvcnv.i | ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) |
dvcnv.d | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
dvcnv.z | ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) |
Ref | Expression |
---|---|
dvcnv | ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcnv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvfg 25920 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ) |
4 | recnprss 25918 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | dvcnv.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) | |
7 | f1ocnv 6844 | . . . . . . . . 9 ⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) | |
8 | f1of 6832 | . . . . . . . . 9 ⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) | |
9 | 6, 7, 8 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → ◡𝐹:𝑌⟶𝑋) |
10 | dvcnv.d | . . . . . . . . . 10 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
11 | dvbsss 25916 | . . . . . . . . . 10 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
12 | 10, 11 | eqsstrrdi 4034 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
13 | 12, 5 | sstrd 3989 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
14 | 9, 13 | fssd 6734 | . . . . . . 7 ⊢ (𝜑 → ◡𝐹:𝑌⟶ℂ) |
15 | dvcnv.k | . . . . . . . . 9 ⊢ 𝐾 = (𝐽 ↾t 𝑆) | |
16 | dvcnv.j | . . . . . . . . . . 11 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
17 | 16 | cnfldtopon 24784 | . . . . . . . . . 10 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
18 | resttopon 23150 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
19 | 17, 5, 18 | sylancr 585 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
20 | 15, 19 | eqeltrid 2830 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑆)) |
21 | dvcnv.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
22 | toponss 22914 | . . . . . . . 8 ⊢ ((𝐾 ∈ (TopOn‘𝑆) ∧ 𝑌 ∈ 𝐾) → 𝑌 ⊆ 𝑆) | |
23 | 20, 21, 22 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
24 | 5, 14, 23 | dvbss 25915 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D ◡𝐹) ⊆ 𝑌) |
25 | f1ocnvfv2 7280 | . . . . . . . . 9 ⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) | |
26 | 6, 25 | sylan 578 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
27 | 1 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ {ℝ, ℂ}) |
28 | 21 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑌 ∈ 𝐾) |
29 | 6 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋–1-1-onto→𝑌) |
30 | dvcnv.i | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) | |
31 | 30 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ◡𝐹 ∈ (𝑌–cn→𝑋)) |
32 | 10 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → dom (𝑆 D 𝐹) = 𝑋) |
33 | dvcnv.z | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) | |
34 | 33 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ¬ 0 ∈ ran (𝑆 D 𝐹)) |
35 | 9 | ffvelcdmda 7087 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹‘𝑥) ∈ 𝑋) |
36 | 16, 15, 27, 28, 29, 31, 32, 34, 35 | dvcnvlem 25993 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥))(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥)))) |
37 | 26, 36 | eqbrtrrd 5167 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥)))) |
38 | reldv 25884 | . . . . . . . 8 ⊢ Rel (𝑆 D ◡𝐹) | |
39 | 38 | releldmi 5944 | . . . . . . 7 ⊢ (𝑥(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))) → 𝑥 ∈ dom (𝑆 D ◡𝐹)) |
40 | 37, 39 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑆 D ◡𝐹)) |
41 | 24, 40 | eqelssd 4000 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D ◡𝐹) = 𝑌) |
42 | 41 | feq2d 6703 | . . . 4 ⊢ (𝜑 → ((𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ ↔ (𝑆 D ◡𝐹):𝑌⟶ℂ)) |
43 | 3, 42 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑆 D ◡𝐹):𝑌⟶ℂ) |
44 | 43 | feqmptd 6960 | . 2 ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ ((𝑆 D ◡𝐹)‘𝑥))) |
45 | 3 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ) |
46 | 45 | ffund 6721 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → Fun (𝑆 D ◡𝐹)) |
47 | funbrfv 6941 | . . . 4 ⊢ (Fun (𝑆 D ◡𝐹) → (𝑥(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))) → ((𝑆 D ◡𝐹)‘𝑥) = (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) | |
48 | 46, 37, 47 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆 D ◡𝐹)‘𝑥) = (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥)))) |
49 | 48 | mpteq2dva 5243 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ ((𝑆 D ◡𝐹)‘𝑥)) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) |
50 | 44, 49 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 {cpr 4625 class class class wbr 5143 ↦ cmpt 5226 ◡ccnv 5671 dom cdm 5672 ran crn 5673 Fun wfun 6537 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7413 ℂcc 11144 ℝcr 11145 0cc0 11146 1c1 11147 / cdiv 11909 ↾t crest 17427 TopOpenctopn 17428 ℂfldccnfld 21336 TopOnctopon 22897 –cn→ccncf 24881 D cdv 25877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7866 df-1st 7992 df-2nd 7993 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9396 df-fi 9444 df-sup 9475 df-inf 9476 df-oi 9543 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12256 df-2 12318 df-3 12319 df-4 12320 df-5 12321 df-6 12322 df-7 12323 df-8 12324 df-9 12325 df-n0 12516 df-z 12602 df-dec 12721 df-uz 12866 df-q 12976 df-rp 13020 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-icc 13376 df-fz 13530 df-fzo 13673 df-seq 14013 df-exp 14073 df-hash 14340 df-cj 15096 df-re 15097 df-im 15098 df-sqrt 15232 df-abs 15233 df-struct 17141 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-ress 17235 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-hom 17282 df-cco 17283 df-rest 17429 df-topn 17430 df-0g 17448 df-gsum 17449 df-topgen 17450 df-pt 17451 df-prds 17454 df-xrs 17509 df-qtop 17514 df-imas 17515 df-xps 17517 df-mre 17591 df-mrc 17592 df-acs 17594 df-mgm 18625 df-sgrp 18704 df-mnd 18720 df-submnd 18766 df-mulg 19055 df-cntz 19304 df-cmn 19773 df-psmet 21328 df-xmet 21329 df-met 21330 df-bl 21331 df-mopn 21332 df-fbas 21333 df-fg 21334 df-cnfld 21337 df-top 22881 df-topon 22898 df-topsp 22920 df-bases 22934 df-cld 23008 df-ntr 23009 df-cls 23010 df-nei 23087 df-lp 23125 df-perf 23126 df-cn 23216 df-cnp 23217 df-haus 23304 df-tx 23551 df-hmeo 23744 df-fil 23835 df-fm 23927 df-flim 23928 df-flf 23929 df-xms 24311 df-ms 24312 df-tms 24313 df-cncf 24883 df-limc 25880 df-dv 25881 |
This theorem is referenced by: dvcnvre 26037 dvlog 26672 |
Copyright terms: Public domain | W3C validator |