| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvcnv | Structured version Visualization version GIF version | ||
| Description: A weak version of dvcnvre 25951, valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| dvcnv.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| dvcnv.k | ⊢ 𝐾 = (𝐽 ↾t 𝑆) |
| dvcnv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvcnv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| dvcnv.f | ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) |
| dvcnv.i | ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) |
| dvcnv.d | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| dvcnv.z | ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) |
| Ref | Expression |
|---|---|
| dvcnv | ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvfg 25834 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ) |
| 4 | recnprss 25832 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 6 | dvcnv.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) | |
| 7 | f1ocnv 6775 | . . . . . . . . 9 ⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) | |
| 8 | f1of 6763 | . . . . . . . . 9 ⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → ◡𝐹:𝑌⟶𝑋) |
| 10 | dvcnv.d | . . . . . . . . . 10 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
| 11 | dvbsss 25830 | . . . . . . . . . 10 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
| 12 | 10, 11 | eqsstrrdi 3975 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 13 | 12, 5 | sstrd 3940 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 14 | 9, 13 | fssd 6668 | . . . . . . 7 ⊢ (𝜑 → ◡𝐹:𝑌⟶ℂ) |
| 15 | dvcnv.k | . . . . . . . . 9 ⊢ 𝐾 = (𝐽 ↾t 𝑆) | |
| 16 | dvcnv.j | . . . . . . . . . . 11 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 17 | 16 | cnfldtopon 24697 | . . . . . . . . . 10 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 18 | resttopon 23076 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 19 | 17, 5, 18 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 20 | 15, 19 | eqeltrid 2835 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑆)) |
| 21 | dvcnv.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 22 | toponss 22842 | . . . . . . . 8 ⊢ ((𝐾 ∈ (TopOn‘𝑆) ∧ 𝑌 ∈ 𝐾) → 𝑌 ⊆ 𝑆) | |
| 23 | 20, 21, 22 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
| 24 | 5, 14, 23 | dvbss 25829 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D ◡𝐹) ⊆ 𝑌) |
| 25 | f1ocnvfv2 7211 | . . . . . . . . 9 ⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) | |
| 26 | 6, 25 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 27 | 1 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ {ℝ, ℂ}) |
| 28 | 21 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑌 ∈ 𝐾) |
| 29 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋–1-1-onto→𝑌) |
| 30 | dvcnv.i | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) | |
| 31 | 30 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ◡𝐹 ∈ (𝑌–cn→𝑋)) |
| 32 | 10 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → dom (𝑆 D 𝐹) = 𝑋) |
| 33 | dvcnv.z | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) | |
| 34 | 33 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ¬ 0 ∈ ran (𝑆 D 𝐹)) |
| 35 | 9 | ffvelcdmda 7017 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹‘𝑥) ∈ 𝑋) |
| 36 | 16, 15, 27, 28, 29, 31, 32, 34, 35 | dvcnvlem 25907 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥))(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥)))) |
| 37 | 26, 36 | eqbrtrrd 5113 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥)))) |
| 38 | reldv 25798 | . . . . . . . 8 ⊢ Rel (𝑆 D ◡𝐹) | |
| 39 | 38 | releldmi 5887 | . . . . . . 7 ⊢ (𝑥(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))) → 𝑥 ∈ dom (𝑆 D ◡𝐹)) |
| 40 | 37, 39 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑆 D ◡𝐹)) |
| 41 | 24, 40 | eqelssd 3951 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D ◡𝐹) = 𝑌) |
| 42 | 41 | feq2d 6635 | . . . 4 ⊢ (𝜑 → ((𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ ↔ (𝑆 D ◡𝐹):𝑌⟶ℂ)) |
| 43 | 3, 42 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑆 D ◡𝐹):𝑌⟶ℂ) |
| 44 | 43 | feqmptd 6890 | . 2 ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ ((𝑆 D ◡𝐹)‘𝑥))) |
| 45 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ) |
| 46 | 45 | ffund 6655 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → Fun (𝑆 D ◡𝐹)) |
| 47 | funbrfv 6870 | . . . 4 ⊢ (Fun (𝑆 D ◡𝐹) → (𝑥(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))) → ((𝑆 D ◡𝐹)‘𝑥) = (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) | |
| 48 | 46, 37, 47 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆 D ◡𝐹)‘𝑥) = (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥)))) |
| 49 | 48 | mpteq2dva 5182 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ ((𝑆 D ◡𝐹)‘𝑥)) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) |
| 50 | 44, 49 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {cpr 4575 class class class wbr 5089 ↦ cmpt 5170 ◡ccnv 5613 dom cdm 5614 ran crn 5615 Fun wfun 6475 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 / cdiv 11774 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21291 TopOnctopon 22825 –cn→ccncf 24796 D cdv 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 |
| This theorem is referenced by: dvcnvre 25951 dvlog 26587 |
| Copyright terms: Public domain | W3C validator |