Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvcnv | Structured version Visualization version GIF version |
Description: A weak version of dvcnvre 24940, valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
Ref | Expression |
---|---|
dvcnv.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
dvcnv.k | ⊢ 𝐾 = (𝐽 ↾t 𝑆) |
dvcnv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvcnv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
dvcnv.f | ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) |
dvcnv.i | ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) |
dvcnv.d | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
dvcnv.z | ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) |
Ref | Expression |
---|---|
dvcnv | ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcnv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvfg 24827 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ) |
4 | recnprss 24825 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | dvcnv.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) | |
7 | f1ocnv 6692 | . . . . . . . . 9 ⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) | |
8 | f1of 6680 | . . . . . . . . 9 ⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) | |
9 | 6, 7, 8 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → ◡𝐹:𝑌⟶𝑋) |
10 | dvcnv.d | . . . . . . . . . 10 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
11 | dvbsss 24823 | . . . . . . . . . 10 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
12 | 10, 11 | eqsstrrdi 3971 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
13 | 12, 5 | sstrd 3926 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
14 | 9, 13 | fssd 6582 | . . . . . . 7 ⊢ (𝜑 → ◡𝐹:𝑌⟶ℂ) |
15 | dvcnv.k | . . . . . . . . 9 ⊢ 𝐾 = (𝐽 ↾t 𝑆) | |
16 | dvcnv.j | . . . . . . . . . . 11 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
17 | 16 | cnfldtopon 23704 | . . . . . . . . . 10 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
18 | resttopon 22082 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
19 | 17, 5, 18 | sylancr 590 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
20 | 15, 19 | eqeltrid 2843 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑆)) |
21 | dvcnv.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
22 | toponss 21848 | . . . . . . . 8 ⊢ ((𝐾 ∈ (TopOn‘𝑆) ∧ 𝑌 ∈ 𝐾) → 𝑌 ⊆ 𝑆) | |
23 | 20, 21, 22 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
24 | 5, 14, 23 | dvbss 24822 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D ◡𝐹) ⊆ 𝑌) |
25 | f1ocnvfv2 7107 | . . . . . . . . 9 ⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) | |
26 | 6, 25 | sylan 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
27 | 1 | adantr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ {ℝ, ℂ}) |
28 | 21 | adantr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑌 ∈ 𝐾) |
29 | 6 | adantr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋–1-1-onto→𝑌) |
30 | dvcnv.i | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) | |
31 | 30 | adantr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ◡𝐹 ∈ (𝑌–cn→𝑋)) |
32 | 10 | adantr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → dom (𝑆 D 𝐹) = 𝑋) |
33 | dvcnv.z | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) | |
34 | 33 | adantr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ¬ 0 ∈ ran (𝑆 D 𝐹)) |
35 | 9 | ffvelrnda 6923 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹‘𝑥) ∈ 𝑋) |
36 | 16, 15, 27, 28, 29, 31, 32, 34, 35 | dvcnvlem 24897 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥))(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥)))) |
37 | 26, 36 | eqbrtrrd 5092 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥)))) |
38 | reldv 24791 | . . . . . . . 8 ⊢ Rel (𝑆 D ◡𝐹) | |
39 | 38 | releldmi 5832 | . . . . . . 7 ⊢ (𝑥(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))) → 𝑥 ∈ dom (𝑆 D ◡𝐹)) |
40 | 37, 39 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑆 D ◡𝐹)) |
41 | 24, 40 | eqelssd 3937 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D ◡𝐹) = 𝑌) |
42 | 41 | feq2d 6550 | . . . 4 ⊢ (𝜑 → ((𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ ↔ (𝑆 D ◡𝐹):𝑌⟶ℂ)) |
43 | 3, 42 | mpbid 235 | . . 3 ⊢ (𝜑 → (𝑆 D ◡𝐹):𝑌⟶ℂ) |
44 | 43 | feqmptd 6799 | . 2 ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ ((𝑆 D ◡𝐹)‘𝑥))) |
45 | 3 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑆 D ◡𝐹):dom (𝑆 D ◡𝐹)⟶ℂ) |
46 | 45 | ffund 6568 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → Fun (𝑆 D ◡𝐹)) |
47 | funbrfv 6782 | . . . 4 ⊢ (Fun (𝑆 D ◡𝐹) → (𝑥(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))) → ((𝑆 D ◡𝐹)‘𝑥) = (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) | |
48 | 46, 37, 47 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆 D ◡𝐹)‘𝑥) = (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥)))) |
49 | 48 | mpteq2dva 5165 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ ((𝑆 D ◡𝐹)‘𝑥)) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) |
50 | 44, 49 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ⊆ wss 3881 {cpr 4558 class class class wbr 5068 ↦ cmpt 5150 ◡ccnv 5565 dom cdm 5566 ran crn 5567 Fun wfun 6392 ⟶wf 6394 –1-1-onto→wf1o 6397 ‘cfv 6398 (class class class)co 7232 ℂcc 10752 ℝcr 10753 0cc0 10754 1c1 10755 / cdiv 11514 ↾t crest 16950 TopOpenctopn 16951 ℂfldccnfld 20388 TopOnctopon 21831 –cn→ccncf 23797 D cdv 24784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 ax-mulf 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-supp 7925 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-2o 8224 df-er 8412 df-map 8531 df-pm 8532 df-ixp 8600 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-fsupp 9011 df-fi 9052 df-sup 9083 df-inf 9084 df-oi 9151 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-q 12570 df-rp 12612 df-xneg 12729 df-xadd 12730 df-xmul 12731 df-icc 12967 df-fz 13121 df-fzo 13264 df-seq 13600 df-exp 13661 df-hash 13922 df-cj 14687 df-re 14688 df-im 14689 df-sqrt 14823 df-abs 14824 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-starv 16842 df-sca 16843 df-vsca 16844 df-ip 16845 df-tset 16846 df-ple 16847 df-ds 16849 df-unif 16850 df-hom 16851 df-cco 16852 df-rest 16952 df-topn 16953 df-0g 16971 df-gsum 16972 df-topgen 16973 df-pt 16974 df-prds 16977 df-xrs 17032 df-qtop 17037 df-imas 17038 df-xps 17040 df-mre 17114 df-mrc 17115 df-acs 17117 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-submnd 18244 df-mulg 18514 df-cntz 18736 df-cmn 19197 df-psmet 20380 df-xmet 20381 df-met 20382 df-bl 20383 df-mopn 20384 df-fbas 20385 df-fg 20386 df-cnfld 20389 df-top 21815 df-topon 21832 df-topsp 21854 df-bases 21867 df-cld 21940 df-ntr 21941 df-cls 21942 df-nei 22019 df-lp 22057 df-perf 22058 df-cn 22148 df-cnp 22149 df-haus 22236 df-tx 22483 df-hmeo 22676 df-fil 22767 df-fm 22859 df-flim 22860 df-flf 22861 df-xms 23242 df-ms 23243 df-tms 23244 df-cncf 23799 df-limc 24787 df-dv 24788 |
This theorem is referenced by: dvcnvre 24940 dvlog 25563 |
Copyright terms: Public domain | W3C validator |