| Step | Hyp | Ref
| Expression |
| 1 | | dvaddf.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶ℂ) |
| 3 | | dvaddf.df |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| 4 | | dvbsss 25938 |
. . . . . 6
⊢ dom
(𝑆 D 𝐹) ⊆ 𝑆 |
| 5 | 3, 4 | eqsstrrdi 4028 |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 6 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ 𝑆) |
| 7 | | dvaddf.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| 8 | 7 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) |
| 9 | | dvaddf.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 10 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ {ℝ, ℂ}) |
| 11 | 3 | eleq2d 2826 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥 ∈ 𝑋)) |
| 12 | 11 | biimpar 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
| 13 | | dvaddf.dg |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| 14 | 13 | eleq2d 2826 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥 ∈ 𝑋)) |
| 15 | 14 | biimpar 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺)) |
| 16 | 2, 6, 8, 6, 10, 12, 15 | dvmul 25979 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D (𝐹 ∘f · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
| 17 | 16 | mpteq2dva 5241 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑆 D (𝐹 ∘f · 𝐺))‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
| 18 | | dvfg 25942 |
. . . . 5
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D (𝐹 ∘f ·
𝐺)):dom (𝑆 D (𝐹 ∘f · 𝐺))⟶ℂ) |
| 19 | 9, 18 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑆 D (𝐹 ∘f · 𝐺)):dom (𝑆 D (𝐹 ∘f · 𝐺))⟶ℂ) |
| 20 | | recnprss 25940 |
. . . . . . . 8
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 21 | 9, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 22 | | mulcl 11240 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 23 | 22 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
| 24 | 9, 5 | ssexd 5323 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ V) |
| 25 | | inidm 4226 |
. . . . . . . 8
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
| 26 | 23, 1, 7, 24, 24, 25 | off 7716 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘f · 𝐺):𝑋⟶ℂ) |
| 27 | 21, 26, 5 | dvbss 25937 |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f · 𝐺)) ⊆ 𝑋) |
| 28 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ ℂ) |
| 29 | | dvfg 25942 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 30 | 9, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 31 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 32 | | ffun 6738 |
. . . . . . . . . 10
⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) |
| 33 | | funfvbrb 7070 |
. . . . . . . . . 10
⊢ (Fun
(𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
| 34 | 31, 32, 33 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
| 35 | 12, 34 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)) |
| 36 | | dvfg 25942 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 37 | 9, 36 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 38 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 39 | | ffun 6738 |
. . . . . . . . . 10
⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) |
| 40 | | funfvbrb 7070 |
. . . . . . . . . 10
⊢ (Fun
(𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
| 41 | 38, 39, 40 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
| 42 | 15, 41 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)) |
| 43 | | eqid 2736 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 44 | 2, 6, 8, 6, 28, 35, 42, 43 | dvmulbr 25976 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D (𝐹 ∘f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
| 45 | | reldv 25906 |
. . . . . . . 8
⊢ Rel
(𝑆 D (𝐹 ∘f · 𝐺)) |
| 46 | 45 | releldmi 5958 |
. . . . . . 7
⊢ (𝑥(𝑆 D (𝐹 ∘f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f · 𝐺))) |
| 47 | 44, 46 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘f · 𝐺))) |
| 48 | 27, 47 | eqelssd 4004 |
. . . . 5
⊢ (𝜑 → dom (𝑆 D (𝐹 ∘f · 𝐺)) = 𝑋) |
| 49 | 48 | feq2d 6721 |
. . . 4
⊢ (𝜑 → ((𝑆 D (𝐹 ∘f · 𝐺)):dom (𝑆 D (𝐹 ∘f · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹 ∘f · 𝐺)):𝑋⟶ℂ)) |
| 50 | 19, 49 | mpbid 232 |
. . 3
⊢ (𝜑 → (𝑆 D (𝐹 ∘f · 𝐺)):𝑋⟶ℂ) |
| 51 | 50 | feqmptd 6976 |
. 2
⊢ (𝜑 → (𝑆 D (𝐹 ∘f · 𝐺)) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D (𝐹 ∘f · 𝐺))‘𝑥))) |
| 52 | | ovexd 7467 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) ∈ V) |
| 53 | | ovexd 7467 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)) ∈ V) |
| 54 | | fvexd 6920 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V) |
| 55 | | fvexd 6920 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ V) |
| 56 | 3 | feq2d 6721 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 57 | 30, 56 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 58 | 57 | feqmptd 6976 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐹) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
| 59 | 7 | feqmptd 6976 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 60 | 24, 54, 55, 58, 59 | offval2 7718 |
. . 3
⊢ (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)))) |
| 61 | | fvexd 6920 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V) |
| 62 | | fvexd 6920 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ V) |
| 63 | 13 | feq2d 6721 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
| 64 | 37, 63 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
| 65 | 64 | feqmptd 6976 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
| 66 | 1 | feqmptd 6976 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 67 | 24, 61, 62, 65, 66 | offval2 7718 |
. . 3
⊢ (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
| 68 | 24, 52, 53, 60, 67 | offval2 7718 |
. 2
⊢ (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
| 69 | 17, 51, 68 | 3eqtr4d 2786 |
1
⊢ (𝜑 → (𝑆 D (𝐹 ∘f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹))) |