MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulf Structured version   Visualization version   GIF version

Theorem dvmulf 25012
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvmulf (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)))

Proof of Theorem dvmulf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
3 dvaddf.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
4 dvbsss 24971 . . . . . 6 dom (𝑆 D 𝐹) ⊆ 𝑆
53, 4eqsstrrdi 3972 . . . . 5 (𝜑𝑋𝑆)
65adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑋𝑆)
7 dvaddf.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
87adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
9 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
109adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
113eleq2d 2824 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
1211biimpar 477 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
13 dvaddf.dg . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1413eleq2d 2824 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
1514biimpar 477 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
162, 6, 8, 6, 10, 12, 15dvmul 25010 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹f · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
1716mpteq2dva 5170 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑆 D (𝐹f · 𝐺))‘𝑥)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
18 dvfg 24975 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ)
199, 18syl 17 . . . 4 (𝜑 → (𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ)
20 recnprss 24973 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
219, 20syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
22 mulcl 10886 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2322adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
249, 5ssexd 5243 . . . . . . . 8 (𝜑𝑋 ∈ V)
25 inidm 4149 . . . . . . . 8 (𝑋𝑋) = 𝑋
2623, 1, 7, 24, 24, 25off 7529 . . . . . . 7 (𝜑 → (𝐹f · 𝐺):𝑋⟶ℂ)
2721, 26, 5dvbss 24970 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹f · 𝐺)) ⊆ 𝑋)
2821adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
29 fvexd 6771 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
30 fvexd 6771 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V)
31 dvfg 24975 . . . . . . . . . . . 12 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
329, 31syl 17 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
34 ffun 6587 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
35 funfvbrb 6910 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3633, 34, 353syl 18 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3712, 36mpbid 231 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
38 dvfg 24975 . . . . . . . . . . . 12 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
399, 38syl 17 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
4039adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
41 ffun 6587 . . . . . . . . . 10 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
42 funfvbrb 6910 . . . . . . . . . 10 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4340, 41, 423syl 18 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4415, 43mpbid 231 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
45 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
462, 6, 8, 6, 28, 29, 30, 37, 44, 45dvmulbr 25008 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
47 reldv 24939 . . . . . . . 8 Rel (𝑆 D (𝐹f · 𝐺))
4847releldmi 5846 . . . . . . 7 (𝑥(𝑆 D (𝐹f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹f · 𝐺)))
4946, 48syl 17 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹f · 𝐺)))
5027, 49eqelssd 3938 . . . . 5 (𝜑 → dom (𝑆 D (𝐹f · 𝐺)) = 𝑋)
5150feq2d 6570 . . . 4 (𝜑 → ((𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹f · 𝐺)):𝑋⟶ℂ))
5219, 51mpbid 231 . . 3 (𝜑 → (𝑆 D (𝐹f · 𝐺)):𝑋⟶ℂ)
5352feqmptd 6819 . 2 (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (𝑥𝑋 ↦ ((𝑆 D (𝐹f · 𝐺))‘𝑥)))
54 ovexd 7290 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ V)
55 ovexd 7290 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ V)
56 fvexd 6771 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ V)
573feq2d 6570 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
5832, 57mpbid 231 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
5958feqmptd 6819 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
607feqmptd 6819 . . . 4 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
6124, 29, 56, 59, 60offval2 7531 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
62 fvexd 6771 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ V)
6313feq2d 6570 . . . . . 6 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
6439, 63mpbid 231 . . . . 5 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
6564feqmptd 6819 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
661feqmptd 6819 . . . 4 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
6724, 30, 62, 65, 66offval2 7531 . . 3 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
6824, 54, 55, 61, 67offval2 7531 . 2 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
6917, 53, 683eqtr4d 2788 1 (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {cpr 4560   class class class wbr 5070  cmpt 5153  dom cdm 5580  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  cr 10801   + caddc 10805   · cmul 10807  TopOpenctopn 17049  fldccnfld 20510   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvcmulf  25014  dvexp  25022  dvmptmul  25030  expgrowth  41842  binomcxplemnotnn0  41863  dvmulcncf  43356
  Copyright terms: Public domain W3C validator