MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulf Structured version   Visualization version   GIF version

Theorem dvmulf 25995
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvmulf (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)))

Proof of Theorem dvmulf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
3 dvaddf.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
4 dvbsss 25952 . . . . . 6 dom (𝑆 D 𝐹) ⊆ 𝑆
53, 4eqsstrrdi 4051 . . . . 5 (𝜑𝑋𝑆)
65adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑋𝑆)
7 dvaddf.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
87adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
9 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
109adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
113eleq2d 2825 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
1211biimpar 477 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
13 dvaddf.dg . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1413eleq2d 2825 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
1514biimpar 477 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
162, 6, 8, 6, 10, 12, 15dvmul 25993 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹f · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
1716mpteq2dva 5248 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑆 D (𝐹f · 𝐺))‘𝑥)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
18 dvfg 25956 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ)
199, 18syl 17 . . . 4 (𝜑 → (𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ)
20 recnprss 25954 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
219, 20syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
22 mulcl 11237 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2322adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
249, 5ssexd 5330 . . . . . . . 8 (𝜑𝑋 ∈ V)
25 inidm 4235 . . . . . . . 8 (𝑋𝑋) = 𝑋
2623, 1, 7, 24, 24, 25off 7715 . . . . . . 7 (𝜑 → (𝐹f · 𝐺):𝑋⟶ℂ)
2721, 26, 5dvbss 25951 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹f · 𝐺)) ⊆ 𝑋)
2821adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
29 dvfg 25956 . . . . . . . . . . . 12 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
309, 29syl 17 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
32 ffun 6740 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
33 funfvbrb 7071 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3431, 32, 333syl 18 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3512, 34mpbid 232 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
36 dvfg 25956 . . . . . . . . . . . 12 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
379, 36syl 17 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
3837adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
39 ffun 6740 . . . . . . . . . 10 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
40 funfvbrb 7071 . . . . . . . . . 10 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4138, 39, 403syl 18 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4215, 41mpbid 232 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
43 eqid 2735 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
442, 6, 8, 6, 28, 35, 42, 43dvmulbr 25990 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
45 reldv 25920 . . . . . . . 8 Rel (𝑆 D (𝐹f · 𝐺))
4645releldmi 5962 . . . . . . 7 (𝑥(𝑆 D (𝐹f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹f · 𝐺)))
4744, 46syl 17 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹f · 𝐺)))
4827, 47eqelssd 4017 . . . . 5 (𝜑 → dom (𝑆 D (𝐹f · 𝐺)) = 𝑋)
4948feq2d 6723 . . . 4 (𝜑 → ((𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹f · 𝐺)):𝑋⟶ℂ))
5019, 49mpbid 232 . . 3 (𝜑 → (𝑆 D (𝐹f · 𝐺)):𝑋⟶ℂ)
5150feqmptd 6977 . 2 (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (𝑥𝑋 ↦ ((𝑆 D (𝐹f · 𝐺))‘𝑥)))
52 ovexd 7466 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ V)
53 ovexd 7466 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ V)
54 fvexd 6922 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
55 fvexd 6922 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ V)
563feq2d 6723 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
5730, 56mpbid 232 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
5857feqmptd 6977 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
597feqmptd 6977 . . . 4 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
6024, 54, 55, 58, 59offval2 7717 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
61 fvexd 6922 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V)
62 fvexd 6922 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ V)
6313feq2d 6723 . . . . . 6 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
6437, 63mpbid 232 . . . . 5 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
6564feqmptd 6977 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
661feqmptd 6977 . . . 4 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
6724, 61, 62, 65, 66offval2 7717 . . 3 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
6824, 52, 53, 60, 67offval2 7717 . 2 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
6917, 51, 683eqtr4d 2785 1 (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  {cpr 4633   class class class wbr 5148  cmpt 5231  dom cdm 5689  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  cc 11151  cr 11152   + caddc 11156   · cmul 11158  TopOpenctopn 17468  fldccnfld 21382   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  dvcmulf  25997  dvexp  26006  dvmptmul  26014  expgrowth  44331  binomcxplemnotnn0  44352  dvmulcncf  45881
  Copyright terms: Public domain W3C validator