MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulf Structured version   Visualization version   GIF version

Theorem dvmulf 24687
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvmulf (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)))

Proof of Theorem dvmulf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 484 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
3 dvaddf.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
4 dvbsss 24646 . . . . . 6 dom (𝑆 D 𝐹) ⊆ 𝑆
53, 4eqsstrrdi 3930 . . . . 5 (𝜑𝑋𝑆)
65adantr 484 . . . 4 ((𝜑𝑥𝑋) → 𝑋𝑆)
7 dvaddf.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
87adantr 484 . . . 4 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
9 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
109adantr 484 . . . 4 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
113eleq2d 2818 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
1211biimpar 481 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
13 dvaddf.dg . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1413eleq2d 2818 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
1514biimpar 481 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
162, 6, 8, 6, 10, 12, 15dvmul 24685 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹f · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
1716mpteq2dva 5122 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑆 D (𝐹f · 𝐺))‘𝑥)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
18 dvfg 24650 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ)
199, 18syl 17 . . . 4 (𝜑 → (𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ)
20 recnprss 24648 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
219, 20syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
22 mulcl 10692 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2322adantl 485 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
249, 5ssexd 5189 . . . . . . . 8 (𝜑𝑋 ∈ V)
25 inidm 4107 . . . . . . . 8 (𝑋𝑋) = 𝑋
2623, 1, 7, 24, 24, 25off 7436 . . . . . . 7 (𝜑 → (𝐹f · 𝐺):𝑋⟶ℂ)
2721, 26, 5dvbss 24645 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹f · 𝐺)) ⊆ 𝑋)
2821adantr 484 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
29 fvexd 6683 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
30 fvexd 6683 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V)
31 dvfg 24650 . . . . . . . . . . . 12 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
329, 31syl 17 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
3332adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
34 ffun 6501 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
35 funfvbrb 6822 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3633, 34, 353syl 18 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3712, 36mpbid 235 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
38 dvfg 24650 . . . . . . . . . . . 12 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
399, 38syl 17 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
4039adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
41 ffun 6501 . . . . . . . . . 10 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
42 funfvbrb 6822 . . . . . . . . . 10 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4340, 41, 423syl 18 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4415, 43mpbid 235 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
45 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
462, 6, 8, 6, 28, 29, 30, 37, 44, 45dvmulbr 24683 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
47 reldv 24614 . . . . . . . 8 Rel (𝑆 D (𝐹f · 𝐺))
4847releldmi 5785 . . . . . . 7 (𝑥(𝑆 D (𝐹f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹f · 𝐺)))
4946, 48syl 17 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹f · 𝐺)))
5027, 49eqelssd 3896 . . . . 5 (𝜑 → dom (𝑆 D (𝐹f · 𝐺)) = 𝑋)
5150feq2d 6484 . . . 4 (𝜑 → ((𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹f · 𝐺)):𝑋⟶ℂ))
5219, 51mpbid 235 . . 3 (𝜑 → (𝑆 D (𝐹f · 𝐺)):𝑋⟶ℂ)
5352feqmptd 6731 . 2 (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (𝑥𝑋 ↦ ((𝑆 D (𝐹f · 𝐺))‘𝑥)))
54 ovexd 7199 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ V)
55 ovexd 7199 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ V)
56 fvexd 6683 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ V)
573feq2d 6484 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
5832, 57mpbid 235 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
5958feqmptd 6731 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
607feqmptd 6731 . . . 4 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
6124, 29, 56, 59, 60offval2 7438 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
62 fvexd 6683 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ V)
6313feq2d 6484 . . . . . 6 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
6439, 63mpbid 235 . . . . 5 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
6564feqmptd 6731 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
661feqmptd 6731 . . . 4 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
6724, 30, 62, 65, 66offval2 7438 . . 3 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
6824, 54, 55, 61, 67offval2 7438 . 2 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
6917, 53, 683eqtr4d 2783 1 (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  Vcvv 3397  wss 3841  {cpr 4515   class class class wbr 5027  cmpt 5107  dom cdm 5519  Fun wfun 6327  wf 6329  cfv 6333  (class class class)co 7164  f cof 7417  cc 10606  cr 10607   + caddc 10611   · cmul 10613  TopOpenctopn 16791  fldccnfld 20210   D cdv 24607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686  ax-addf 10687  ax-mulf 10688
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-om 7594  df-1st 7707  df-2nd 7708  df-supp 7850  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-er 8313  df-map 8432  df-pm 8433  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fsupp 8900  df-fi 8941  df-sup 8972  df-inf 8973  df-oi 9040  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-icc 12821  df-fz 12975  df-fzo 13118  df-seq 13454  df-exp 13515  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-starv 16676  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-hom 16685  df-cco 16686  df-rest 16792  df-topn 16793  df-0g 16811  df-gsum 16812  df-topgen 16813  df-pt 16814  df-prds 16817  df-xrs 16871  df-qtop 16876  df-imas 16877  df-xps 16879  df-mre 16953  df-mrc 16954  df-acs 16956  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-mulg 18336  df-cntz 18558  df-cmn 19019  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-fbas 20207  df-fg 20208  df-cnfld 20211  df-top 21638  df-topon 21655  df-topsp 21677  df-bases 21690  df-cld 21763  df-ntr 21764  df-cls 21765  df-nei 21842  df-lp 21880  df-perf 21881  df-cn 21971  df-cnp 21972  df-haus 22059  df-tx 22306  df-hmeo 22499  df-fil 22590  df-fm 22682  df-flim 22683  df-flf 22684  df-xms 23066  df-ms 23067  df-tms 23068  df-cncf 23623  df-limc 24610  df-dv 24611
This theorem is referenced by:  dvcmulf  24689  dvexp  24697  dvmptmul  24705  expgrowth  41475  binomcxplemnotnn0  41496  dvmulcncf  42992
  Copyright terms: Public domain W3C validator