MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcof Structured version   Visualization version   GIF version

Theorem dvcof 24537
Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcof.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcof.t (𝜑𝑇 ∈ {ℝ, ℂ})
dvcof.f (𝜑𝐹:𝑋⟶ℂ)
dvcof.g (𝜑𝐺:𝑌𝑋)
dvcof.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvcof.dg (𝜑 → dom (𝑇 D 𝐺) = 𝑌)
Assertion
Ref Expression
dvcof (𝜑 → (𝑇 D (𝐹𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)))

Proof of Theorem dvcof
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcof.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 483 . . . 4 ((𝜑𝑥𝑌) → 𝐹:𝑋⟶ℂ)
3 dvcof.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
4 dvbsss 24492 . . . . . 6 dom (𝑆 D 𝐹) ⊆ 𝑆
53, 4eqsstrrdi 4020 . . . . 5 (𝜑𝑋𝑆)
65adantr 483 . . . 4 ((𝜑𝑥𝑌) → 𝑋𝑆)
7 dvcof.g . . . . 5 (𝜑𝐺:𝑌𝑋)
87adantr 483 . . . 4 ((𝜑𝑥𝑌) → 𝐺:𝑌𝑋)
9 dvcof.dg . . . . . 6 (𝜑 → dom (𝑇 D 𝐺) = 𝑌)
10 dvbsss 24492 . . . . . 6 dom (𝑇 D 𝐺) ⊆ 𝑇
119, 10eqsstrrdi 4020 . . . . 5 (𝜑𝑌𝑇)
1211adantr 483 . . . 4 ((𝜑𝑥𝑌) → 𝑌𝑇)
13 dvcof.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
1413adantr 483 . . . 4 ((𝜑𝑥𝑌) → 𝑆 ∈ {ℝ, ℂ})
15 dvcof.t . . . . 5 (𝜑𝑇 ∈ {ℝ, ℂ})
1615adantr 483 . . . 4 ((𝜑𝑥𝑌) → 𝑇 ∈ {ℝ, ℂ})
177ffvelrnda 6844 . . . . 5 ((𝜑𝑥𝑌) → (𝐺𝑥) ∈ 𝑋)
183adantr 483 . . . . 5 ((𝜑𝑥𝑌) → dom (𝑆 D 𝐹) = 𝑋)
1917, 18eleqtrrd 2914 . . . 4 ((𝜑𝑥𝑌) → (𝐺𝑥) ∈ dom (𝑆 D 𝐹))
209eleq2d 2896 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥𝑌))
2120biimpar 480 . . . 4 ((𝜑𝑥𝑌) → 𝑥 ∈ dom (𝑇 D 𝐺))
222, 6, 8, 12, 14, 16, 19, 21dvco 24536 . . 3 ((𝜑𝑥𝑌) → ((𝑇 D (𝐹𝐺))‘𝑥) = (((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥)))
2322mpteq2dva 5152 . 2 (𝜑 → (𝑥𝑌 ↦ ((𝑇 D (𝐹𝐺))‘𝑥)) = (𝑥𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥))))
24 dvfg 24496 . . . . 5 (𝑇 ∈ {ℝ, ℂ} → (𝑇 D (𝐹𝐺)):dom (𝑇 D (𝐹𝐺))⟶ℂ)
2515, 24syl 17 . . . 4 (𝜑 → (𝑇 D (𝐹𝐺)):dom (𝑇 D (𝐹𝐺))⟶ℂ)
26 recnprss 24494 . . . . . . . 8 (𝑇 ∈ {ℝ, ℂ} → 𝑇 ⊆ ℂ)
2715, 26syl 17 . . . . . . 7 (𝜑𝑇 ⊆ ℂ)
28 fco 6524 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌𝑋) → (𝐹𝐺):𝑌⟶ℂ)
291, 7, 28syl2anc 586 . . . . . . 7 (𝜑 → (𝐹𝐺):𝑌⟶ℂ)
3027, 29, 11dvbss 24491 . . . . . 6 (𝜑 → dom (𝑇 D (𝐹𝐺)) ⊆ 𝑌)
31 recnprss 24494 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3214, 31syl 17 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑆 ⊆ ℂ)
3316, 26syl 17 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑇 ⊆ ℂ)
34 fvexd 6678 . . . . . . . 8 ((𝜑𝑥𝑌) → ((𝑆 D 𝐹)‘(𝐺𝑥)) ∈ V)
35 fvexd 6678 . . . . . . . 8 ((𝜑𝑥𝑌) → ((𝑇 D 𝐺)‘𝑥) ∈ V)
36 dvfg 24496 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
37 ffun 6510 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
38 funfvbrb 6814 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → ((𝐺𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺𝑥))))
3914, 36, 37, 384syl 19 . . . . . . . . 9 ((𝜑𝑥𝑌) → ((𝐺𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺𝑥))))
4019, 39mpbid 234 . . . . . . . 8 ((𝜑𝑥𝑌) → (𝐺𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺𝑥)))
41 dvfg 24496 . . . . . . . . . 10 (𝑇 ∈ {ℝ, ℂ} → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ)
42 ffun 6510 . . . . . . . . . 10 ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ → Fun (𝑇 D 𝐺))
43 funfvbrb 6814 . . . . . . . . . 10 (Fun (𝑇 D 𝐺) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)))
4416, 41, 42, 434syl 19 . . . . . . . . 9 ((𝜑𝑥𝑌) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)))
4521, 44mpbid 234 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))
46 eqid 2819 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
472, 6, 8, 12, 32, 33, 34, 35, 40, 45, 46dvcobr 24535 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑥(𝑇 D (𝐹𝐺))(((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥)))
48 reldv 24460 . . . . . . . 8 Rel (𝑇 D (𝐹𝐺))
4948releldmi 5811 . . . . . . 7 (𝑥(𝑇 D (𝐹𝐺))(((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑇 D (𝐹𝐺)))
5047, 49syl 17 . . . . . 6 ((𝜑𝑥𝑌) → 𝑥 ∈ dom (𝑇 D (𝐹𝐺)))
5130, 50eqelssd 3986 . . . . 5 (𝜑 → dom (𝑇 D (𝐹𝐺)) = 𝑌)
5251feq2d 6493 . . . 4 (𝜑 → ((𝑇 D (𝐹𝐺)):dom (𝑇 D (𝐹𝐺))⟶ℂ ↔ (𝑇 D (𝐹𝐺)):𝑌⟶ℂ))
5325, 52mpbid 234 . . 3 (𝜑 → (𝑇 D (𝐹𝐺)):𝑌⟶ℂ)
5453feqmptd 6726 . 2 (𝜑 → (𝑇 D (𝐹𝐺)) = (𝑥𝑌 ↦ ((𝑇 D (𝐹𝐺))‘𝑥)))
5515, 11ssexd 5219 . . 3 (𝜑𝑌 ∈ V)
567feqmptd 6726 . . . 4 (𝜑𝐺 = (𝑥𝑌 ↦ (𝐺𝑥)))
5713, 36syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
583feq2d 6493 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
5957, 58mpbid 234 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
6059feqmptd 6726 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑦𝑋 ↦ ((𝑆 D 𝐹)‘𝑦)))
61 fveq2 6663 . . . 4 (𝑦 = (𝐺𝑥) → ((𝑆 D 𝐹)‘𝑦) = ((𝑆 D 𝐹)‘(𝐺𝑥)))
6217, 56, 60, 61fmptco 6884 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘ 𝐺) = (𝑥𝑌 ↦ ((𝑆 D 𝐹)‘(𝐺𝑥))))
6315, 41syl 17 . . . . 5 (𝜑 → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ)
649feq2d 6493 . . . . 5 (𝜑 → ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ ↔ (𝑇 D 𝐺):𝑌⟶ℂ))
6563, 64mpbid 234 . . . 4 (𝜑 → (𝑇 D 𝐺):𝑌⟶ℂ)
6665feqmptd 6726 . . 3 (𝜑 → (𝑇 D 𝐺) = (𝑥𝑌 ↦ ((𝑇 D 𝐺)‘𝑥)))
6755, 34, 35, 62, 66offval2 7418 . 2 (𝜑 → (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)) = (𝑥𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥))))
6823, 54, 673eqtr4d 2864 1 (𝜑 → (𝑇 D (𝐹𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  Vcvv 3493  wss 3934  {cpr 4561   class class class wbr 5057  cmpt 5137  dom cdm 5548  ccom 5552  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7148  f cof 7399  cc 10527  cr 10528   · cmul 10534  TopOpenctopn 16687  fldccnfld 20537   D cdv 24453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-icc 12737  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457
This theorem is referenced by:  dvmptco  24561  dvsinax  42176  dvcosax  42190
  Copyright terms: Public domain W3C validator