| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvcof | Structured version Visualization version GIF version | ||
| Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcof.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvcof.t | ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) |
| dvcof.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvcof.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) |
| dvcof.df | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| dvcof.dg | ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) |
| Ref | Expression |
|---|---|
| dvcof | ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcof.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋⟶ℂ) |
| 3 | dvcof.df | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
| 4 | dvbsss 25853 | . . . . . 6 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
| 5 | 3, 4 | eqsstrrdi 4004 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑋 ⊆ 𝑆) |
| 7 | dvcof.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐺:𝑌⟶𝑋) |
| 9 | dvcof.dg | . . . . . 6 ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) | |
| 10 | dvbsss 25853 | . . . . . 6 ⊢ dom (𝑇 D 𝐺) ⊆ 𝑇 | |
| 11 | 9, 10 | eqsstrrdi 4004 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑇) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑌 ⊆ 𝑇) |
| 13 | dvcof.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ {ℝ, ℂ}) |
| 15 | dvcof.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ∈ {ℝ, ℂ}) |
| 17 | 7 | ffvelcdmda 7073 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ 𝑋) |
| 18 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → dom (𝑆 D 𝐹) = 𝑋) |
| 19 | 17, 18 | eleqtrrd 2837 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ dom (𝑆 D 𝐹)) |
| 20 | 9 | eleq2d 2820 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥 ∈ 𝑌)) |
| 21 | 20 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D 𝐺)) |
| 22 | 2, 6, 8, 12, 14, 16, 19, 21 | dvco 25901 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
| 23 | 22 | mpteq2dva 5214 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
| 24 | dvfg 25857 | . . . . 5 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) | |
| 25 | 15, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) |
| 26 | recnprss 25855 | . . . . . . . 8 ⊢ (𝑇 ∈ {ℝ, ℂ} → 𝑇 ⊆ ℂ) | |
| 27 | 15, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ ℂ) |
| 28 | fco 6729 | . . . . . . . 8 ⊢ ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌⟶𝑋) → (𝐹 ∘ 𝐺):𝑌⟶ℂ) | |
| 29 | 1, 7, 28 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝑌⟶ℂ) |
| 30 | 27, 29, 11 | dvbss 25852 | . . . . . 6 ⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) ⊆ 𝑌) |
| 31 | recnprss 25855 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 32 | 14, 31 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ⊆ ℂ) |
| 33 | 16, 26 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ⊆ ℂ) |
| 34 | dvfg 25857 | . . . . . . . . . 10 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 35 | ffun 6708 | . . . . . . . . . 10 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
| 36 | funfvbrb 7040 | . . . . . . . . . 10 ⊢ (Fun (𝑆 D 𝐹) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) | |
| 37 | 14, 34, 35, 36 | 4syl 19 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
| 38 | 19, 37 | mpbid 232 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥))) |
| 39 | dvfg 25857 | . . . . . . . . . 10 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) | |
| 40 | ffun 6708 | . . . . . . . . . 10 ⊢ ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ → Fun (𝑇 D 𝐺)) | |
| 41 | funfvbrb 7040 | . . . . . . . . . 10 ⊢ (Fun (𝑇 D 𝐺) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) | |
| 42 | 16, 39, 40, 41 | 4syl 19 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) |
| 43 | 21, 42 | mpbid 232 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)) |
| 44 | eqid 2735 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 45 | 2, 6, 8, 12, 32, 33, 38, 43, 44 | dvcobr 25899 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
| 46 | reldv 25821 | . . . . . . . 8 ⊢ Rel (𝑇 D (𝐹 ∘ 𝐺)) | |
| 47 | 46 | releldmi 5928 | . . . . . . 7 ⊢ (𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
| 48 | 45, 47 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
| 49 | 30, 48 | eqelssd 3980 | . . . . 5 ⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) = 𝑌) |
| 50 | 49 | feq2d 6691 | . . . 4 ⊢ (𝜑 → ((𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ ↔ (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ)) |
| 51 | 25, 50 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ) |
| 52 | 51 | feqmptd 6946 | . 2 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥))) |
| 53 | 15, 11 | ssexd 5294 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
| 54 | fvexd 6890 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆 D 𝐹)‘(𝐺‘𝑥)) ∈ V) | |
| 55 | fvexd 6890 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D 𝐺)‘𝑥) ∈ V) | |
| 56 | 7 | feqmptd 6946 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑌 ↦ (𝐺‘𝑥))) |
| 57 | 13, 34 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 58 | 3 | feq2d 6691 | . . . . . 6 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 59 | 57, 58 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 60 | 59 | feqmptd 6946 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑦 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑦))) |
| 61 | fveq2 6875 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑥) → ((𝑆 D 𝐹)‘𝑦) = ((𝑆 D 𝐹)‘(𝐺‘𝑥))) | |
| 62 | 17, 56, 60, 61 | fmptco 7118 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘ 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
| 63 | 15, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) |
| 64 | 9 | feq2d 6691 | . . . . 5 ⊢ (𝜑 → ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ ↔ (𝑇 D 𝐺):𝑌⟶ℂ)) |
| 65 | 63, 64 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑇 D 𝐺):𝑌⟶ℂ) |
| 66 | 65 | feqmptd 6946 | . . 3 ⊢ (𝜑 → (𝑇 D 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D 𝐺)‘𝑥))) |
| 67 | 53, 54, 55, 62, 66 | offval2 7689 | . 2 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
| 68 | 23, 52, 67 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {cpr 4603 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ∘ ccom 5658 Fun wfun 6524 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ∘f cof 7667 ℂcc 11125 ℝcr 11126 · cmul 11132 TopOpenctopn 17433 ℂfldccnfld 21313 D cdv 25814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-icc 13367 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-perf 23073 df-cn 23163 df-cnp 23164 df-haus 23251 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 df-limc 25817 df-dv 25818 |
| This theorem is referenced by: dvmptco 25926 dvsinax 45890 dvcosax 45903 |
| Copyright terms: Public domain | W3C validator |