![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvcof | Structured version Visualization version GIF version |
Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvcof.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvcof.t | ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) |
dvcof.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvcof.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) |
dvcof.df | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
dvcof.dg | ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) |
Ref | Expression |
---|---|
dvcof | ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcof.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋⟶ℂ) |
3 | dvcof.df | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
4 | dvbsss 25957 | . . . . . 6 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
5 | 3, 4 | eqsstrrdi 4064 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑋 ⊆ 𝑆) |
7 | dvcof.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐺:𝑌⟶𝑋) |
9 | dvcof.dg | . . . . . 6 ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) | |
10 | dvbsss 25957 | . . . . . 6 ⊢ dom (𝑇 D 𝐺) ⊆ 𝑇 | |
11 | 9, 10 | eqsstrrdi 4064 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑇) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑌 ⊆ 𝑇) |
13 | dvcof.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ {ℝ, ℂ}) |
15 | dvcof.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) | |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ∈ {ℝ, ℂ}) |
17 | 7 | ffvelcdmda 7118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ 𝑋) |
18 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → dom (𝑆 D 𝐹) = 𝑋) |
19 | 17, 18 | eleqtrrd 2847 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ dom (𝑆 D 𝐹)) |
20 | 9 | eleq2d 2830 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥 ∈ 𝑌)) |
21 | 20 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D 𝐺)) |
22 | 2, 6, 8, 12, 14, 16, 19, 21 | dvco 26005 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
23 | 22 | mpteq2dva 5266 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
24 | dvfg 25961 | . . . . 5 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) | |
25 | 15, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) |
26 | recnprss 25959 | . . . . . . . 8 ⊢ (𝑇 ∈ {ℝ, ℂ} → 𝑇 ⊆ ℂ) | |
27 | 15, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ ℂ) |
28 | fco 6771 | . . . . . . . 8 ⊢ ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌⟶𝑋) → (𝐹 ∘ 𝐺):𝑌⟶ℂ) | |
29 | 1, 7, 28 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝑌⟶ℂ) |
30 | 27, 29, 11 | dvbss 25956 | . . . . . 6 ⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) ⊆ 𝑌) |
31 | recnprss 25959 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
32 | 14, 31 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ⊆ ℂ) |
33 | 16, 26 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ⊆ ℂ) |
34 | dvfg 25961 | . . . . . . . . . 10 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
35 | ffun 6750 | . . . . . . . . . 10 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
36 | funfvbrb 7084 | . . . . . . . . . 10 ⊢ (Fun (𝑆 D 𝐹) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) | |
37 | 14, 34, 35, 36 | 4syl 19 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
38 | 19, 37 | mpbid 232 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥))) |
39 | dvfg 25961 | . . . . . . . . . 10 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) | |
40 | ffun 6750 | . . . . . . . . . 10 ⊢ ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ → Fun (𝑇 D 𝐺)) | |
41 | funfvbrb 7084 | . . . . . . . . . 10 ⊢ (Fun (𝑇 D 𝐺) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) | |
42 | 16, 39, 40, 41 | 4syl 19 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) |
43 | 21, 42 | mpbid 232 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)) |
44 | eqid 2740 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
45 | 2, 6, 8, 12, 32, 33, 38, 43, 44 | dvcobr 26003 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
46 | reldv 25925 | . . . . . . . 8 ⊢ Rel (𝑇 D (𝐹 ∘ 𝐺)) | |
47 | 46 | releldmi 5973 | . . . . . . 7 ⊢ (𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
48 | 45, 47 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
49 | 30, 48 | eqelssd 4030 | . . . . 5 ⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) = 𝑌) |
50 | 49 | feq2d 6733 | . . . 4 ⊢ (𝜑 → ((𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ ↔ (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ)) |
51 | 25, 50 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ) |
52 | 51 | feqmptd 6990 | . 2 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥))) |
53 | 15, 11 | ssexd 5342 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
54 | fvexd 6935 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆 D 𝐹)‘(𝐺‘𝑥)) ∈ V) | |
55 | fvexd 6935 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D 𝐺)‘𝑥) ∈ V) | |
56 | 7 | feqmptd 6990 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑌 ↦ (𝐺‘𝑥))) |
57 | 13, 34 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
58 | 3 | feq2d 6733 | . . . . . 6 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
59 | 57, 58 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
60 | 59 | feqmptd 6990 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑦 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑦))) |
61 | fveq2 6920 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑥) → ((𝑆 D 𝐹)‘𝑦) = ((𝑆 D 𝐹)‘(𝐺‘𝑥))) | |
62 | 17, 56, 60, 61 | fmptco 7163 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘ 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
63 | 15, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) |
64 | 9 | feq2d 6733 | . . . . 5 ⊢ (𝜑 → ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ ↔ (𝑇 D 𝐺):𝑌⟶ℂ)) |
65 | 63, 64 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑇 D 𝐺):𝑌⟶ℂ) |
66 | 65 | feqmptd 6990 | . . 3 ⊢ (𝜑 → (𝑇 D 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D 𝐺)‘𝑥))) |
67 | 53, 54, 55, 62, 66 | offval2 7734 | . 2 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
68 | 23, 52, 67 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {cpr 4650 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ∘ ccom 5704 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 ℂcc 11182 ℝcr 11183 · cmul 11189 TopOpenctopn 17481 ℂfldccnfld 21387 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 |
This theorem is referenced by: dvmptco 26030 dvsinax 45834 dvcosax 45847 |
Copyright terms: Public domain | W3C validator |