MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcof Structured version   Visualization version   GIF version

Theorem dvcof 24052
Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcof.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcof.t (𝜑𝑇 ∈ {ℝ, ℂ})
dvcof.f (𝜑𝐹:𝑋⟶ℂ)
dvcof.g (𝜑𝐺:𝑌𝑋)
dvcof.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvcof.dg (𝜑 → dom (𝑇 D 𝐺) = 𝑌)
Assertion
Ref Expression
dvcof (𝜑 → (𝑇 D (𝐹𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘𝑓 · (𝑇 D 𝐺)))

Proof of Theorem dvcof
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcof.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 473 . . . 4 ((𝜑𝑥𝑌) → 𝐹:𝑋⟶ℂ)
3 dvcof.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
4 dvbsss 24007 . . . . . 6 dom (𝑆 D 𝐹) ⊆ 𝑆
53, 4syl6eqssr 3852 . . . . 5 (𝜑𝑋𝑆)
65adantr 473 . . . 4 ((𝜑𝑥𝑌) → 𝑋𝑆)
7 dvcof.g . . . . 5 (𝜑𝐺:𝑌𝑋)
87adantr 473 . . . 4 ((𝜑𝑥𝑌) → 𝐺:𝑌𝑋)
9 dvcof.dg . . . . . 6 (𝜑 → dom (𝑇 D 𝐺) = 𝑌)
10 dvbsss 24007 . . . . . 6 dom (𝑇 D 𝐺) ⊆ 𝑇
119, 10syl6eqssr 3852 . . . . 5 (𝜑𝑌𝑇)
1211adantr 473 . . . 4 ((𝜑𝑥𝑌) → 𝑌𝑇)
13 dvcof.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
1413adantr 473 . . . 4 ((𝜑𝑥𝑌) → 𝑆 ∈ {ℝ, ℂ})
15 dvcof.t . . . . 5 (𝜑𝑇 ∈ {ℝ, ℂ})
1615adantr 473 . . . 4 ((𝜑𝑥𝑌) → 𝑇 ∈ {ℝ, ℂ})
177ffvelrnda 6585 . . . . 5 ((𝜑𝑥𝑌) → (𝐺𝑥) ∈ 𝑋)
183adantr 473 . . . . 5 ((𝜑𝑥𝑌) → dom (𝑆 D 𝐹) = 𝑋)
1917, 18eleqtrrd 2881 . . . 4 ((𝜑𝑥𝑌) → (𝐺𝑥) ∈ dom (𝑆 D 𝐹))
209eleq2d 2864 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥𝑌))
2120biimpar 470 . . . 4 ((𝜑𝑥𝑌) → 𝑥 ∈ dom (𝑇 D 𝐺))
222, 6, 8, 12, 14, 16, 19, 21dvco 24051 . . 3 ((𝜑𝑥𝑌) → ((𝑇 D (𝐹𝐺))‘𝑥) = (((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥)))
2322mpteq2dva 4937 . 2 (𝜑 → (𝑥𝑌 ↦ ((𝑇 D (𝐹𝐺))‘𝑥)) = (𝑥𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥))))
24 dvfg 24011 . . . . 5 (𝑇 ∈ {ℝ, ℂ} → (𝑇 D (𝐹𝐺)):dom (𝑇 D (𝐹𝐺))⟶ℂ)
2515, 24syl 17 . . . 4 (𝜑 → (𝑇 D (𝐹𝐺)):dom (𝑇 D (𝐹𝐺))⟶ℂ)
26 recnprss 24009 . . . . . . . 8 (𝑇 ∈ {ℝ, ℂ} → 𝑇 ⊆ ℂ)
2715, 26syl 17 . . . . . . 7 (𝜑𝑇 ⊆ ℂ)
28 fco 6273 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌𝑋) → (𝐹𝐺):𝑌⟶ℂ)
291, 7, 28syl2anc 580 . . . . . . 7 (𝜑 → (𝐹𝐺):𝑌⟶ℂ)
3027, 29, 11dvbss 24006 . . . . . 6 (𝜑 → dom (𝑇 D (𝐹𝐺)) ⊆ 𝑌)
31 recnprss 24009 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3214, 31syl 17 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑆 ⊆ ℂ)
3316, 26syl 17 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑇 ⊆ ℂ)
34 fvexd 6426 . . . . . . . 8 ((𝜑𝑥𝑌) → ((𝑆 D 𝐹)‘(𝐺𝑥)) ∈ V)
35 fvexd 6426 . . . . . . . 8 ((𝜑𝑥𝑌) → ((𝑇 D 𝐺)‘𝑥) ∈ V)
36 dvfg 24011 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
37 ffun 6259 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
38 funfvbrb 6556 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → ((𝐺𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺𝑥))))
3914, 36, 37, 384syl 19 . . . . . . . . 9 ((𝜑𝑥𝑌) → ((𝐺𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺𝑥))))
4019, 39mpbid 224 . . . . . . . 8 ((𝜑𝑥𝑌) → (𝐺𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺𝑥)))
41 dvfg 24011 . . . . . . . . . 10 (𝑇 ∈ {ℝ, ℂ} → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ)
42 ffun 6259 . . . . . . . . . 10 ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ → Fun (𝑇 D 𝐺))
43 funfvbrb 6556 . . . . . . . . . 10 (Fun (𝑇 D 𝐺) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)))
4416, 41, 42, 434syl 19 . . . . . . . . 9 ((𝜑𝑥𝑌) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)))
4521, 44mpbid 224 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))
46 eqid 2799 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
472, 6, 8, 12, 32, 33, 34, 35, 40, 45, 46dvcobr 24050 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑥(𝑇 D (𝐹𝐺))(((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥)))
48 reldv 23975 . . . . . . . 8 Rel (𝑇 D (𝐹𝐺))
4948releldmi 5566 . . . . . . 7 (𝑥(𝑇 D (𝐹𝐺))(((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑇 D (𝐹𝐺)))
5047, 49syl 17 . . . . . 6 ((𝜑𝑥𝑌) → 𝑥 ∈ dom (𝑇 D (𝐹𝐺)))
5130, 50eqelssd 3818 . . . . 5 (𝜑 → dom (𝑇 D (𝐹𝐺)) = 𝑌)
5251feq2d 6242 . . . 4 (𝜑 → ((𝑇 D (𝐹𝐺)):dom (𝑇 D (𝐹𝐺))⟶ℂ ↔ (𝑇 D (𝐹𝐺)):𝑌⟶ℂ))
5325, 52mpbid 224 . . 3 (𝜑 → (𝑇 D (𝐹𝐺)):𝑌⟶ℂ)
5453feqmptd 6474 . 2 (𝜑 → (𝑇 D (𝐹𝐺)) = (𝑥𝑌 ↦ ((𝑇 D (𝐹𝐺))‘𝑥)))
5515, 11ssexd 5000 . . 3 (𝜑𝑌 ∈ V)
567feqmptd 6474 . . . 4 (𝜑𝐺 = (𝑥𝑌 ↦ (𝐺𝑥)))
5713, 36syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
583feq2d 6242 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
5957, 58mpbid 224 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
6059feqmptd 6474 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑦𝑋 ↦ ((𝑆 D 𝐹)‘𝑦)))
61 fveq2 6411 . . . 4 (𝑦 = (𝐺𝑥) → ((𝑆 D 𝐹)‘𝑦) = ((𝑆 D 𝐹)‘(𝐺𝑥)))
6217, 56, 60, 61fmptco 6623 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘ 𝐺) = (𝑥𝑌 ↦ ((𝑆 D 𝐹)‘(𝐺𝑥))))
6315, 41syl 17 . . . . 5 (𝜑 → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ)
649feq2d 6242 . . . . 5 (𝜑 → ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ ↔ (𝑇 D 𝐺):𝑌⟶ℂ))
6563, 64mpbid 224 . . . 4 (𝜑 → (𝑇 D 𝐺):𝑌⟶ℂ)
6665feqmptd 6474 . . 3 (𝜑 → (𝑇 D 𝐺) = (𝑥𝑌 ↦ ((𝑇 D 𝐺)‘𝑥)))
6755, 34, 35, 62, 66offval2 7148 . 2 (𝜑 → (((𝑆 D 𝐹) ∘ 𝐺) ∘𝑓 · (𝑇 D 𝐺)) = (𝑥𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥))))
6823, 54, 673eqtr4d 2843 1 (𝜑 → (𝑇 D (𝐹𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘𝑓 · (𝑇 D 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  Vcvv 3385  wss 3769  {cpr 4370   class class class wbr 4843  cmpt 4922  dom cdm 5312  ccom 5316  Fun wfun 6095  wf 6097  cfv 6101  (class class class)co 6878  𝑓 cof 7129  cc 10222  cr 10223   · cmul 10229  TopOpenctopn 16397  fldccnfld 20068   D cdv 23968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-icc 12431  df-fz 12581  df-fzo 12721  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-hom 16291  df-cco 16292  df-rest 16398  df-topn 16399  df-0g 16417  df-gsum 16418  df-topgen 16419  df-pt 16420  df-prds 16423  df-xrs 16477  df-qtop 16482  df-imas 16483  df-xps 16485  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-mulg 17857  df-cntz 18062  df-cmn 18510  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-fbas 20065  df-fg 20066  df-cnfld 20069  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-cld 21152  df-ntr 21153  df-cls 21154  df-nei 21231  df-lp 21269  df-perf 21270  df-cn 21360  df-cnp 21361  df-haus 21448  df-tx 21694  df-hmeo 21887  df-fil 21978  df-fm 22070  df-flim 22071  df-flf 22072  df-xms 22453  df-ms 22454  df-tms 22455  df-cncf 23009  df-limc 23971  df-dv 23972
This theorem is referenced by:  dvmptco  24076  dvsinax  40871  dvcosax  40885
  Copyright terms: Public domain W3C validator