| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvcof | Structured version Visualization version GIF version | ||
| Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcof.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvcof.t | ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) |
| dvcof.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvcof.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) |
| dvcof.df | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| dvcof.dg | ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) |
| Ref | Expression |
|---|---|
| dvcof | ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcof.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋⟶ℂ) |
| 3 | dvcof.df | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
| 4 | dvbsss 25801 | . . . . . 6 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
| 5 | 3, 4 | eqsstrrdi 3981 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑋 ⊆ 𝑆) |
| 7 | dvcof.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐺:𝑌⟶𝑋) |
| 9 | dvcof.dg | . . . . . 6 ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) | |
| 10 | dvbsss 25801 | . . . . . 6 ⊢ dom (𝑇 D 𝐺) ⊆ 𝑇 | |
| 11 | 9, 10 | eqsstrrdi 3981 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑇) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑌 ⊆ 𝑇) |
| 13 | dvcof.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ {ℝ, ℂ}) |
| 15 | dvcof.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ∈ {ℝ, ℂ}) |
| 17 | 7 | ffvelcdmda 7018 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ 𝑋) |
| 18 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → dom (𝑆 D 𝐹) = 𝑋) |
| 19 | 17, 18 | eleqtrrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ dom (𝑆 D 𝐹)) |
| 20 | 9 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥 ∈ 𝑌)) |
| 21 | 20 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D 𝐺)) |
| 22 | 2, 6, 8, 12, 14, 16, 19, 21 | dvco 25849 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
| 23 | 22 | mpteq2dva 5185 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
| 24 | dvfg 25805 | . . . . 5 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) | |
| 25 | 15, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) |
| 26 | recnprss 25803 | . . . . . . . 8 ⊢ (𝑇 ∈ {ℝ, ℂ} → 𝑇 ⊆ ℂ) | |
| 27 | 15, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ ℂ) |
| 28 | fco 6676 | . . . . . . . 8 ⊢ ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌⟶𝑋) → (𝐹 ∘ 𝐺):𝑌⟶ℂ) | |
| 29 | 1, 7, 28 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝑌⟶ℂ) |
| 30 | 27, 29, 11 | dvbss 25800 | . . . . . 6 ⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) ⊆ 𝑌) |
| 31 | recnprss 25803 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 32 | 14, 31 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ⊆ ℂ) |
| 33 | 16, 26 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ⊆ ℂ) |
| 34 | dvfg 25805 | . . . . . . . . . 10 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 35 | ffun 6655 | . . . . . . . . . 10 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
| 36 | funfvbrb 6985 | . . . . . . . . . 10 ⊢ (Fun (𝑆 D 𝐹) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) | |
| 37 | 14, 34, 35, 36 | 4syl 19 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
| 38 | 19, 37 | mpbid 232 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥))) |
| 39 | dvfg 25805 | . . . . . . . . . 10 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) | |
| 40 | ffun 6655 | . . . . . . . . . 10 ⊢ ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ → Fun (𝑇 D 𝐺)) | |
| 41 | funfvbrb 6985 | . . . . . . . . . 10 ⊢ (Fun (𝑇 D 𝐺) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) | |
| 42 | 16, 39, 40, 41 | 4syl 19 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) |
| 43 | 21, 42 | mpbid 232 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)) |
| 44 | eqid 2729 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 45 | 2, 6, 8, 12, 32, 33, 38, 43, 44 | dvcobr 25847 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
| 46 | reldv 25769 | . . . . . . . 8 ⊢ Rel (𝑇 D (𝐹 ∘ 𝐺)) | |
| 47 | 46 | releldmi 5890 | . . . . . . 7 ⊢ (𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
| 48 | 45, 47 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
| 49 | 30, 48 | eqelssd 3957 | . . . . 5 ⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) = 𝑌) |
| 50 | 49 | feq2d 6636 | . . . 4 ⊢ (𝜑 → ((𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ ↔ (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ)) |
| 51 | 25, 50 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ) |
| 52 | 51 | feqmptd 6891 | . 2 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥))) |
| 53 | 15, 11 | ssexd 5263 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
| 54 | fvexd 6837 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆 D 𝐹)‘(𝐺‘𝑥)) ∈ V) | |
| 55 | fvexd 6837 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D 𝐺)‘𝑥) ∈ V) | |
| 56 | 7 | feqmptd 6891 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑌 ↦ (𝐺‘𝑥))) |
| 57 | 13, 34 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 58 | 3 | feq2d 6636 | . . . . . 6 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 59 | 57, 58 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 60 | 59 | feqmptd 6891 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑦 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑦))) |
| 61 | fveq2 6822 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑥) → ((𝑆 D 𝐹)‘𝑦) = ((𝑆 D 𝐹)‘(𝐺‘𝑥))) | |
| 62 | 17, 56, 60, 61 | fmptco 7063 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘ 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
| 63 | 15, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) |
| 64 | 9 | feq2d 6636 | . . . . 5 ⊢ (𝜑 → ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ ↔ (𝑇 D 𝐺):𝑌⟶ℂ)) |
| 65 | 63, 64 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑇 D 𝐺):𝑌⟶ℂ) |
| 66 | 65 | feqmptd 6891 | . . 3 ⊢ (𝜑 → (𝑇 D 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D 𝐺)‘𝑥))) |
| 67 | 53, 54, 55, 62, 66 | offval2 7633 | . 2 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
| 68 | 23, 52, 67 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 {cpr 4579 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ∘ ccom 5623 Fun wfun 6476 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 ℂcc 11007 ℝcr 11008 · cmul 11014 TopOpenctopn 17325 ℂfldccnfld 21261 D cdv 25762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 |
| This theorem is referenced by: dvmptco 25874 dvsinax 45904 dvcosax 45917 |
| Copyright terms: Public domain | W3C validator |