![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resssca | Structured version Visualization version GIF version |
Description: Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
resssca.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
resssca.2 | ⊢ 𝐹 = (Scalar‘𝐺) |
Ref | Expression |
---|---|
resssca | ⊢ (𝐴 ∈ 𝑉 → 𝐹 = (Scalar‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resssca.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | resssca.2 | . 2 ⊢ 𝐹 = (Scalar‘𝐺) | |
3 | scaid 17367 | . 2 ⊢ Scalar = Slot (Scalar‘ndx) | |
4 | scandxnbasendx 17368 | . 2 ⊢ (Scalar‘ndx) ≠ (Base‘ndx) | |
5 | 1, 2, 3, 4 | resseqnbas 17293 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹 = (Scalar‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 ‘cfv 6566 (class class class)co 7435 ↾s cress 17280 Scalarcsca 17307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-sca 17320 |
This theorem is referenced by: islss3 20981 reslmhm 21075 reslmhm2 21076 reslmhm2b 21077 pj1lmhm 21123 lsslvec 21132 phlssphl 21701 frlmsca 21797 lsslindf 21874 issubassa3 21910 ressascl 21940 mplsca 22057 ply1sca 22276 scmatghm 22561 lssnlm 24744 lssnvc 24745 cphsscph 25307 lssbn 25408 cmslssbn 25428 csschl 25432 rrxsca 25452 xrge0slmod 33369 ply1degltdimlem 33663 fedgmullem2 33671 dimlssid 33673 algextdeglem8 33743 sitmcl 34346 repwsmet 37833 rrnequiv 37834 lcdsca 41594 |
Copyright terms: Public domain | W3C validator |