MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssca Structured version   Visualization version   GIF version

Theorem resssca 17364
Description: Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
resssca.1 𝐻 = (𝐺s 𝐴)
resssca.2 𝐹 = (Scalar‘𝐺)
Assertion
Ref Expression
resssca (𝐴𝑉𝐹 = (Scalar‘𝐻))

Proof of Theorem resssca
StepHypRef Expression
1 resssca.1 . 2 𝐻 = (𝐺s 𝐴)
2 resssca.2 . 2 𝐹 = (Scalar‘𝐺)
3 scaid 17336 . 2 Scalar = Slot (Scalar‘ndx)
4 scandxnbasendx 17337 . 2 (Scalar‘ndx) ≠ (Base‘ndx)
51, 2, 3, 4resseqnbas 17269 1 (𝐴𝑉𝐹 = (Scalar‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6542  (class class class)co 7414  s cress 17256  Scalarcsca 17280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-sca 17293
This theorem is referenced by:  islss3  20930  reslmhm  21024  reslmhm2  21025  reslmhm2b  21026  pj1lmhm  21072  lsslvec  21081  phlssphl  21644  frlmsca  21740  lsslindf  21817  issubassa3  21853  ressascl  21883  mplsca  22000  ply1sca  22221  scmatghm  22506  lssnlm  24677  lssnvc  24678  cphsscph  25240  lssbn  25341  cmslssbn  25361  csschl  25365  rrxsca  25385  xrge0slmod  33317  ply1degltdimlem  33614  fedgmullem2  33622  dimlssid  33624  algextdeglem8  33706  sitmcl  34294  repwsmet  37782  rrnequiv  37783  lcdsca  41542
  Copyright terms: Public domain W3C validator