MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssca Structured version   Visualization version   GIF version

Theorem resssca 17293
Description: Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
resssca.1 𝐻 = (𝐺s 𝐴)
resssca.2 𝐹 = (Scalar‘𝐺)
Assertion
Ref Expression
resssca (𝐴𝑉𝐹 = (Scalar‘𝐻))

Proof of Theorem resssca
StepHypRef Expression
1 resssca.1 . 2 𝐻 = (𝐺s 𝐴)
2 resssca.2 . 2 𝐹 = (Scalar‘𝐺)
3 scaid 17265 . 2 Scalar = Slot (Scalar‘ndx)
4 scandxnbasendx 17266 . 2 (Scalar‘ndx) ≠ (Base‘ndx)
51, 2, 3, 4resseqnbas 17191 1 (𝐴𝑉𝐹 = (Scalar‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  s cress 17178  Scalarcsca 17205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-sca 17218
This theorem is referenced by:  islss3  20715  reslmhm  20808  reslmhm2  20809  reslmhm2b  20810  pj1lmhm  20856  lsslvec  20865  phlssphl  21432  frlmsca  21528  lsslindf  21605  issubassa3  21640  ressascl  21670  mplsca  21792  ply1sca  21996  scmatghm  22256  lssnlm  24439  lssnvc  24440  cphsscph  25000  lssbn  25101  cmslssbn  25121  csschl  25125  rrxsca  25145  xrge0slmod  32734  ply1degltdimlem  32996  fedgmullem2  33004  algextdeglem8  33070  sitmcl  33649  repwsmet  37006  rrnequiv  37007  lcdsca  40774
  Copyright terms: Public domain W3C validator