MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssca Structured version   Visualization version   GIF version

Theorem resssca 16642
Description: Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
resssca.1 𝐻 = (𝐺s 𝐴)
resssca.2 𝐹 = (Scalar‘𝐺)
Assertion
Ref Expression
resssca (𝐴𝑉𝐹 = (Scalar‘𝐻))

Proof of Theorem resssca
StepHypRef Expression
1 resssca.1 . 2 𝐻 = (𝐺s 𝐴)
2 resssca.2 . 2 𝐹 = (Scalar‘𝐺)
3 df-sca 16573 . 2 Scalar = Slot 5
4 5nn 11715 . 2 5 ∈ ℕ
5 1lt5 11809 . 2 1 < 5
61, 2, 3, 4, 5resslem 16549 1 (𝐴𝑉𝐹 = (Scalar‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2106  cfv 6351  (class class class)co 7151  5c5 11687  s cress 16476  Scalarcsca 16560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-sca 16573
This theorem is referenced by:  islss3  19653  reslmhm  19746  reslmhm2  19747  reslmhm2b  19748  pj1lmhm  19794  lsslvec  19801  issubassa3  20018  ressascl  20046  mplsca  20146  ply1sca  20338  phlssphl  20719  frlmsca  20813  lsslindf  20890  scmatghm  21058  lssnlm  23225  lssnvc  23226  cphsscph  23769  lssbn  23870  cmslssbn  23890  csschl  23894  rrxsca  23914  xrge0slmod  30832  fedgmullem2  30913  sitmcl  31496  repwsmet  34981  rrnequiv  34982  lcdsca  38603
  Copyright terms: Public domain W3C validator