MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restin Structured version   Visualization version   GIF version

Theorem restin 23102
Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
restin.1 𝑋 = 𝐽
Assertion
Ref Expression
restin ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = (𝐽t (𝐴𝑋)))

Proof of Theorem restin
StepHypRef Expression
1 restin.1 . . . . 5 𝑋 = 𝐽
2 uniexg 7732 . . . . 5 (𝐽𝑉 𝐽 ∈ V)
31, 2eqeltrid 2838 . . . 4 (𝐽𝑉𝑋 ∈ V)
43adantr 480 . . 3 ((𝐽𝑉𝐴𝑊) → 𝑋 ∈ V)
5 restco 23100 . . . 4 ((𝐽𝑉𝑋 ∈ V ∧ 𝐴𝑊) → ((𝐽t 𝑋) ↾t 𝐴) = (𝐽t (𝑋𝐴)))
653com23 1126 . . 3 ((𝐽𝑉𝐴𝑊𝑋 ∈ V) → ((𝐽t 𝑋) ↾t 𝐴) = (𝐽t (𝑋𝐴)))
74, 6mpd3an3 1464 . 2 ((𝐽𝑉𝐴𝑊) → ((𝐽t 𝑋) ↾t 𝐴) = (𝐽t (𝑋𝐴)))
81restid 17445 . . . 4 (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
98adantr 480 . . 3 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝑋) = 𝐽)
109oveq1d 7418 . 2 ((𝐽𝑉𝐴𝑊) → ((𝐽t 𝑋) ↾t 𝐴) = (𝐽t 𝐴))
11 incom 4184 . . . 4 (𝑋𝐴) = (𝐴𝑋)
1211oveq2i 7414 . . 3 (𝐽t (𝑋𝐴)) = (𝐽t (𝐴𝑋))
1312a1i 11 . 2 ((𝐽𝑉𝐴𝑊) → (𝐽t (𝑋𝐴)) = (𝐽t (𝐴𝑋)))
147, 10, 133eqtr3d 2778 1 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = (𝐽t (𝐴𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925   cuni 4883  (class class class)co 7403  t crest 17432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-rest 17434
This theorem is referenced by:  restuni2  23103  cnrest2r  23223  cnrmi  23296  restcnrm  23298  resthauslem  23299  imacmp  23333  fiuncmp  23340  kgeni  23473  ressxms  24462  ptrest  37589  restuni6  45094
  Copyright terms: Public domain W3C validator