Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > restin | Structured version Visualization version GIF version |
Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
restin.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restin | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restin.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | uniexg 7593 | . . . . 5 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
3 | 1, 2 | eqeltrid 2843 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → 𝑋 ∈ V) |
5 | restco 22315 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑋 ∈ V ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) | |
6 | 5 | 3com23 1125 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑋 ∈ V) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) |
7 | 4, 6 | mpd3an3 1461 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) |
8 | 1 | restid 17144 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
9 | 8 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝑋) = 𝐽) |
10 | 9 | oveq1d 7290 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
11 | incom 4135 | . . . 4 ⊢ (𝑋 ∩ 𝐴) = (𝐴 ∩ 𝑋) | |
12 | 11 | oveq2i 7286 | . . 3 ⊢ (𝐽 ↾t (𝑋 ∩ 𝐴)) = (𝐽 ↾t (𝐴 ∩ 𝑋)) |
13 | 12 | a1i 11 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t (𝑋 ∩ 𝐴)) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
14 | 7, 10, 13 | 3eqtr3d 2786 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ∪ cuni 4839 (class class class)co 7275 ↾t crest 17131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-rest 17133 |
This theorem is referenced by: restuni2 22318 cnrest2r 22438 cnrmi 22511 restcnrm 22513 resthauslem 22514 imacmp 22548 fiuncmp 22555 kgeni 22688 ressxms 23681 ptrest 35776 restuni6 42671 |
Copyright terms: Public domain | W3C validator |