![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restin | Structured version Visualization version GIF version |
Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
restin.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restin | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restin.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | uniexg 7189 | . . . . 5 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
3 | 1, 2 | syl5eqel 2882 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
4 | 3 | adantr 473 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → 𝑋 ∈ V) |
5 | restco 21297 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑋 ∈ V ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) | |
6 | 5 | 3com23 1157 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑋 ∈ V) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) |
7 | 4, 6 | mpd3an3 1587 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) |
8 | 1 | restid 16409 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
9 | 8 | adantr 473 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝑋) = 𝐽) |
10 | 9 | oveq1d 6893 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
11 | incom 4003 | . . . 4 ⊢ (𝑋 ∩ 𝐴) = (𝐴 ∩ 𝑋) | |
12 | 11 | oveq2i 6889 | . . 3 ⊢ (𝐽 ↾t (𝑋 ∩ 𝐴)) = (𝐽 ↾t (𝐴 ∩ 𝑋)) |
13 | 12 | a1i 11 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t (𝑋 ∩ 𝐴)) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
14 | 7, 10, 13 | 3eqtr3d 2841 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∩ cin 3768 ∪ cuni 4628 (class class class)co 6878 ↾t crest 16396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-rest 16398 |
This theorem is referenced by: restuni2 21300 cnrest2r 21420 cnrmi 21493 restcnrm 21495 resthauslem 21496 imacmp 21529 fiuncmp 21536 kgeni 21669 ressxms 22658 ptrest 33897 restuni6 40063 |
Copyright terms: Public domain | W3C validator |