MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordeu Structured version   Visualization version   GIF version

Theorem oawordeu 8386
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59. (Contributed by NM, 11-Dec-2004.)
Assertion
Ref Expression
oawordeu (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oawordeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3946 . . . 4 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴𝐵 ↔ if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵))
2 oveq1 7282 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 +o 𝑥) = (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥))
32eqeq1d 2740 . . . . 5 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 +o 𝑥) = 𝐵 ↔ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵))
43reubidv 3323 . . . 4 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 ↔ ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵))
51, 4imbi12d 345 . . 3 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) ↔ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵)))
6 sseq2 3947 . . . 4 (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → (if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 ↔ if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅)))
7 eqeq2 2750 . . . . 5 (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → ((if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵 ↔ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅)))
87reubidv 3323 . . . 4 (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → (∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵 ↔ ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅)))
96, 8imbi12d 345 . . 3 (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → ((if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵) ↔ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅) → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅))))
10 0elon 6319 . . . . 5 ∅ ∈ On
1110elimel 4528 . . . 4 if(𝐴 ∈ On, 𝐴, ∅) ∈ On
1210elimel 4528 . . . 4 if(𝐵 ∈ On, 𝐵, ∅) ∈ On
13 eqid 2738 . . . 4 {𝑦 ∈ On ∣ if(𝐵 ∈ On, 𝐵, ∅) ⊆ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑦)} = {𝑦 ∈ On ∣ if(𝐵 ∈ On, 𝐵, ∅) ⊆ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑦)}
1411, 12, 13oawordeulem 8385 . . 3 (if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅) → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅))
155, 9, 14dedth2h 4518 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
1615imp 407 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ∃!wreu 3066  {crab 3068  wss 3887  c0 4256  ifcif 4459  Oncon0 6266  (class class class)co 7275   +o coa 8294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-oadd 8301
This theorem is referenced by:  oawordex  8388  oaf1o  8394  oaabs  8478  oaabs2  8479  finxpreclem4  35565
  Copyright terms: Public domain W3C validator