MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordeu Structured version   Visualization version   GIF version

Theorem oawordeu 8557
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59. (Contributed by NM, 11-Dec-2004.)
Assertion
Ref Expression
oawordeu (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oawordeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq1 4007 . . . 4 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴𝐵 ↔ if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵))
2 oveq1 7418 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 +o 𝑥) = (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥))
32eqeq1d 2734 . . . . 5 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 +o 𝑥) = 𝐵 ↔ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵))
43reubidv 3394 . . . 4 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 ↔ ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵))
51, 4imbi12d 344 . . 3 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) ↔ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵)))
6 sseq2 4008 . . . 4 (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → (if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 ↔ if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅)))
7 eqeq2 2744 . . . . 5 (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → ((if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵 ↔ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅)))
87reubidv 3394 . . . 4 (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → (∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵 ↔ ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅)))
96, 8imbi12d 344 . . 3 (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → ((if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵) ↔ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅) → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅))))
10 0elon 6418 . . . . 5 ∅ ∈ On
1110elimel 4597 . . . 4 if(𝐴 ∈ On, 𝐴, ∅) ∈ On
1210elimel 4597 . . . 4 if(𝐵 ∈ On, 𝐵, ∅) ∈ On
13 eqid 2732 . . . 4 {𝑦 ∈ On ∣ if(𝐵 ∈ On, 𝐵, ∅) ⊆ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑦)} = {𝑦 ∈ On ∣ if(𝐵 ∈ On, 𝐵, ∅) ⊆ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑦)}
1411, 12, 13oawordeulem 8556 . . 3 (if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅) → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅))
155, 9, 14dedth2h 4587 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
1615imp 407 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ∃!wreu 3374  {crab 3432  wss 3948  c0 4322  ifcif 4528  Oncon0 6364  (class class class)co 7411   +o coa 8465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-oadd 8472
This theorem is referenced by:  oawordex  8559  oaf1o  8565  oaabs  8649  oaabs2  8650  finxpreclem4  36361  tfsconcatlem  42168  tfsconcatfv  42173
  Copyright terms: Public domain W3C validator