![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oawordeu | Structured version Visualization version GIF version |
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59. (Contributed by NM, 11-Dec-2004.) |
Ref | Expression |
---|---|
oawordeu | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4005 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 ⊆ 𝐵 ↔ if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵)) | |
2 | oveq1 7427 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 +o 𝑥) = (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥)) | |
3 | 2 | eqeq1d 2730 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 +o 𝑥) = 𝐵 ↔ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵)) |
4 | 3 | reubidv 3391 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 ↔ ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵)) |
5 | 1, 4 | imbi12d 344 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 ⊆ 𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) ↔ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵))) |
6 | sseq2 4006 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → (if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 ↔ if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅))) | |
7 | eqeq2 2740 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → ((if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵 ↔ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅))) | |
8 | 7 | reubidv 3391 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → (∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵 ↔ ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅))) |
9 | 6, 8 | imbi12d 344 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → ((if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵) ↔ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅) → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅)))) |
10 | 0elon 6423 | . . . . 5 ⊢ ∅ ∈ On | |
11 | 10 | elimel 4598 | . . . 4 ⊢ if(𝐴 ∈ On, 𝐴, ∅) ∈ On |
12 | 10 | elimel 4598 | . . . 4 ⊢ if(𝐵 ∈ On, 𝐵, ∅) ∈ On |
13 | eqid 2728 | . . . 4 ⊢ {𝑦 ∈ On ∣ if(𝐵 ∈ On, 𝐵, ∅) ⊆ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑦)} = {𝑦 ∈ On ∣ if(𝐵 ∈ On, 𝐵, ∅) ⊆ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑦)} | |
14 | 11, 12, 13 | oawordeulem 8575 | . . 3 ⊢ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅) → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅)) |
15 | 5, 9, 14 | dedth2h 4588 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) |
16 | 15 | imp 406 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃!wreu 3371 {crab 3429 ⊆ wss 3947 ∅c0 4323 ifcif 4529 Oncon0 6369 (class class class)co 7420 +o coa 8484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-oadd 8491 |
This theorem is referenced by: oawordex 8578 oaf1o 8584 oaabs 8669 oaabs2 8670 finxpreclem4 36873 tfsconcatlem 42765 tfsconcatfv 42770 |
Copyright terms: Public domain | W3C validator |