![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oawordeu | Structured version Visualization version GIF version |
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59. (Contributed by NM, 11-Dec-2004.) |
Ref | Expression |
---|---|
oawordeu | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4020 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 ⊆ 𝐵 ↔ if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵)) | |
2 | oveq1 7437 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 +o 𝑥) = (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥)) | |
3 | 2 | eqeq1d 2736 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 +o 𝑥) = 𝐵 ↔ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵)) |
4 | 3 | reubidv 3395 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 ↔ ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵)) |
5 | 1, 4 | imbi12d 344 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 ⊆ 𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) ↔ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵))) |
6 | sseq2 4021 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → (if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 ↔ if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅))) | |
7 | eqeq2 2746 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → ((if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵 ↔ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅))) | |
8 | 7 | reubidv 3395 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → (∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵 ↔ ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅))) |
9 | 6, 8 | imbi12d 344 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, ∅) → ((if(𝐴 ∈ On, 𝐴, ∅) ⊆ 𝐵 → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = 𝐵) ↔ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅) → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅)))) |
10 | 0elon 6439 | . . . . 5 ⊢ ∅ ∈ On | |
11 | 10 | elimel 4599 | . . . 4 ⊢ if(𝐴 ∈ On, 𝐴, ∅) ∈ On |
12 | 10 | elimel 4599 | . . . 4 ⊢ if(𝐵 ∈ On, 𝐵, ∅) ∈ On |
13 | eqid 2734 | . . . 4 ⊢ {𝑦 ∈ On ∣ if(𝐵 ∈ On, 𝐵, ∅) ⊆ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑦)} = {𝑦 ∈ On ∣ if(𝐵 ∈ On, 𝐵, ∅) ⊆ (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑦)} | |
14 | 11, 12, 13 | oawordeulem 8590 | . . 3 ⊢ (if(𝐴 ∈ On, 𝐴, ∅) ⊆ if(𝐵 ∈ On, 𝐵, ∅) → ∃!𝑥 ∈ On (if(𝐴 ∈ On, 𝐴, ∅) +o 𝑥) = if(𝐵 ∈ On, 𝐵, ∅)) |
15 | 5, 9, 14 | dedth2h 4589 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) |
16 | 15 | imp 406 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃!wreu 3375 {crab 3432 ⊆ wss 3962 ∅c0 4338 ifcif 4530 Oncon0 6385 (class class class)co 7430 +o coa 8501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-oadd 8508 |
This theorem is referenced by: oawordex 8593 oaf1o 8599 oaabs 8684 oaabs2 8685 finxpreclem4 37376 tfsconcatlem 43325 tfsconcatfv 43330 |
Copyright terms: Public domain | W3C validator |