Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem6 Structured version   Visualization version   GIF version

Theorem hdmap14lem6 40336
Description: Case where 𝐹 is zero. (Contributed by NM, 1-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem1.h 𝐻 = (LHyp‘𝐾)
hdmap14lem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem1.v 𝑉 = (Base‘𝑈)
hdmap14lem1.t · = ( ·𝑠𝑈)
hdmap14lem3.o 0 = (0g𝑈)
hdmap14lem1.r 𝑅 = (Scalar‘𝑈)
hdmap14lem1.b 𝐵 = (Base‘𝑅)
hdmap14lem1.z 𝑍 = (0g𝑅)
hdmap14lem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem2.e = ( ·𝑠𝐶)
hdmap14lem1.l 𝐿 = (LSpan‘𝐶)
hdmap14lem2.p 𝑃 = (Scalar‘𝐶)
hdmap14lem2.a 𝐴 = (Base‘𝑃)
hdmap14lem2.q 𝑄 = (0g𝑃)
hdmap14lem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem3.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem6.f (𝜑𝐹 = 𝑍)
Assertion
Ref Expression
hdmap14lem6 (𝜑 → ∃!𝑔𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 (𝑆𝑋)))
Distinct variable groups:   𝐴,𝑔   𝐶,𝑔   ,𝑔   𝑄,𝑔   𝑆,𝑔   𝑔,𝑋   𝜑,𝑔
Allowed substitution hints:   𝐵(𝑔)   𝑃(𝑔)   𝑅(𝑔)   · (𝑔)   𝑈(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)   0 (𝑔)   𝑍(𝑔)

Proof of Theorem hdmap14lem6
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 hdmap14lem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap14lem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmap14lem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 40055 . . . . 5 (𝜑𝐶 ∈ LMod)
5 hdmap14lem2.p . . . . . 6 𝑃 = (Scalar‘𝐶)
6 hdmap14lem2.a . . . . . 6 𝐴 = (Base‘𝑃)
7 hdmap14lem2.q . . . . . 6 𝑄 = (0g𝑃)
85, 6, 7lmod0cl 20348 . . . . 5 (𝐶 ∈ LMod → 𝑄𝐴)
94, 8syl 17 . . . 4 (𝜑𝑄𝐴)
10 hdmap14lem1.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 hdmap14lem1.v . . . . . . 7 𝑉 = (Base‘𝑈)
12 eqid 2736 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
13 hdmap14lem1.s . . . . . . 7 𝑆 = ((HDMap‘𝐾)‘𝑊)
14 hdmap14lem3.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3922 . . . . . . 7 (𝜑𝑋𝑉)
161, 10, 11, 2, 12, 13, 3, 15hdmapcl 40293 . . . . . 6 (𝜑 → (𝑆𝑋) ∈ (Base‘𝐶))
17 hdmap14lem2.e . . . . . . 7 = ( ·𝑠𝐶)
18 eqid 2736 . . . . . . 7 (0g𝐶) = (0g𝐶)
1912, 5, 17, 7, 18lmod0vs 20355 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑋) ∈ (Base‘𝐶)) → (𝑄 (𝑆𝑋)) = (0g𝐶))
204, 16, 19syl2anc 584 . . . . 5 (𝜑 → (𝑄 (𝑆𝑋)) = (0g𝐶))
2120eqcomd 2742 . . . 4 (𝜑 → (0g𝐶) = (𝑄 (𝑆𝑋)))
22 oveq1 7364 . . . . 5 (𝑔 = 𝑄 → (𝑔 (𝑆𝑋)) = (𝑄 (𝑆𝑋)))
2322rspceeqv 3595 . . . 4 ((𝑄𝐴 ∧ (0g𝐶) = (𝑄 (𝑆𝑋))) → ∃𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)))
249, 21, 23syl2anc 584 . . 3 (𝜑 → ∃𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)))
25 hdmap14lem3.o . . . . . . . . . . 11 0 = (0g𝑈)
261, 10, 11, 25, 2, 18, 12, 13, 3, 14hdmapnzcl 40308 . . . . . . . . . 10 (𝜑 → (𝑆𝑋) ∈ ((Base‘𝐶) ∖ {(0g𝐶)}))
27 eldifsni 4750 . . . . . . . . . 10 ((𝑆𝑋) ∈ ((Base‘𝐶) ∖ {(0g𝐶)}) → (𝑆𝑋) ≠ (0g𝐶))
2826, 27syl 17 . . . . . . . . 9 (𝜑 → (𝑆𝑋) ≠ (0g𝐶))
2928neneqd 2948 . . . . . . . 8 (𝜑 → ¬ (𝑆𝑋) = (0g𝐶))
30293ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ¬ (𝑆𝑋) = (0g𝐶))
31 simp3l 1201 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (0g𝐶) = (𝑔 (𝑆𝑋)))
3231eqcomd 2742 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (𝑔 (𝑆𝑋)) = (0g𝐶))
331, 2, 3lcdlvec 40054 . . . . . . . . . . . 12 (𝜑𝐶 ∈ LVec)
34333ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝐶 ∈ LVec)
35 simp2l 1199 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝑔𝐴)
36163ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (𝑆𝑋) ∈ (Base‘𝐶))
3712, 17, 5, 6, 7, 18, 34, 35, 36lvecvs0or 20569 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ((𝑔 (𝑆𝑋)) = (0g𝐶) ↔ (𝑔 = 𝑄 ∨ (𝑆𝑋) = (0g𝐶))))
3832, 37mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (𝑔 = 𝑄 ∨ (𝑆𝑋) = (0g𝐶)))
3938orcomd 869 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ((𝑆𝑋) = (0g𝐶) ∨ 𝑔 = 𝑄))
4039ord 862 . . . . . . 7 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (¬ (𝑆𝑋) = (0g𝐶) → 𝑔 = 𝑄))
4130, 40mpd 15 . . . . . 6 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝑔 = 𝑄)
42 simp3r 1202 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (0g𝐶) = ( (𝑆𝑋)))
4342eqcomd 2742 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ( (𝑆𝑋)) = (0g𝐶))
44 simp2r 1200 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝐴)
4512, 17, 5, 6, 7, 18, 34, 44, 36lvecvs0or 20569 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (( (𝑆𝑋)) = (0g𝐶) ↔ ( = 𝑄 ∨ (𝑆𝑋) = (0g𝐶))))
4643, 45mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ( = 𝑄 ∨ (𝑆𝑋) = (0g𝐶)))
4746orcomd 869 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ((𝑆𝑋) = (0g𝐶) ∨ = 𝑄))
4847ord 862 . . . . . . 7 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (¬ (𝑆𝑋) = (0g𝐶) → = 𝑄))
4930, 48mpd 15 . . . . . 6 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → = 𝑄)
5041, 49eqtr4d 2779 . . . . 5 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝑔 = )
51503exp 1119 . . . 4 (𝜑 → ((𝑔𝐴𝐴) → (((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋))) → 𝑔 = )))
5251ralrimivv 3195 . . 3 (𝜑 → ∀𝑔𝐴𝐴 (((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋))) → 𝑔 = ))
53 oveq1 7364 . . . . 5 (𝑔 = → (𝑔 (𝑆𝑋)) = ( (𝑆𝑋)))
5453eqeq2d 2747 . . . 4 (𝑔 = → ((0g𝐶) = (𝑔 (𝑆𝑋)) ↔ (0g𝐶) = ( (𝑆𝑋))))
5554reu4 3689 . . 3 (∃!𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)) ↔ (∃𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)) ∧ ∀𝑔𝐴𝐴 (((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋))) → 𝑔 = )))
5624, 52, 55sylanbrc 583 . 2 (𝜑 → ∃!𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)))
57 hdmap14lem6.f . . . . . . . 8 (𝜑𝐹 = 𝑍)
5857oveq1d 7372 . . . . . . 7 (𝜑 → (𝐹 · 𝑋) = (𝑍 · 𝑋))
591, 10, 3dvhlmod 39573 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
60 hdmap14lem1.r . . . . . . . . 9 𝑅 = (Scalar‘𝑈)
61 hdmap14lem1.t . . . . . . . . 9 · = ( ·𝑠𝑈)
62 hdmap14lem1.z . . . . . . . . 9 𝑍 = (0g𝑅)
6311, 60, 61, 62, 25lmod0vs 20355 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑍 · 𝑋) = 0 )
6459, 15, 63syl2anc 584 . . . . . . 7 (𝜑 → (𝑍 · 𝑋) = 0 )
6558, 64eqtrd 2776 . . . . . 6 (𝜑 → (𝐹 · 𝑋) = 0 )
6665fveq2d 6846 . . . . 5 (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝑆0 ))
671, 10, 25, 2, 18, 13, 3hdmapval0 40296 . . . . 5 (𝜑 → (𝑆0 ) = (0g𝐶))
6866, 67eqtrd 2776 . . . 4 (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (0g𝐶))
6968eqeq1d 2738 . . 3 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝑔 (𝑆𝑋)) ↔ (0g𝐶) = (𝑔 (𝑆𝑋))))
7069reubidv 3371 . 2 (𝜑 → (∃!𝑔𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 (𝑆𝑋)) ↔ ∃!𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋))))
7156, 70mpbird 256 1 (𝜑 → ∃!𝑔𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 (𝑆𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  ∃!wreu 3351  cdif 3907  {csn 4586  cfv 6496  (class class class)co 7357  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  LModclmod 20322  LSpanclspn 20432  LVecclvec 20563  HLchlt 37812  LHypclh 38447  DVecHcdvh 39541  LCDualclcd 40049  HDMapchdma 40255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-mre 17466  df-mrc 17467  df-acs 17469  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-oppg 19124  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lsatoms 37438  df-lshyp 37439  df-lcv 37481  df-lfl 37520  df-lkr 37548  df-ldual 37586  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tgrp 39206  df-tendo 39218  df-edring 39220  df-dveca 39466  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692  df-doch 39811  df-djh 39858  df-lcdual 40050  df-mapd 40088  df-hvmap 40220  df-hdmap1 40256  df-hdmap 40257
This theorem is referenced by:  hdmap14lem7  40337
  Copyright terms: Public domain W3C validator