Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem6 Structured version   Visualization version   GIF version

Theorem hdmap14lem6 41872
Description: Case where 𝐹 is zero. (Contributed by NM, 1-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem1.h 𝐻 = (LHyp‘𝐾)
hdmap14lem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem1.v 𝑉 = (Base‘𝑈)
hdmap14lem1.t · = ( ·𝑠𝑈)
hdmap14lem3.o 0 = (0g𝑈)
hdmap14lem1.r 𝑅 = (Scalar‘𝑈)
hdmap14lem1.b 𝐵 = (Base‘𝑅)
hdmap14lem1.z 𝑍 = (0g𝑅)
hdmap14lem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem2.e = ( ·𝑠𝐶)
hdmap14lem1.l 𝐿 = (LSpan‘𝐶)
hdmap14lem2.p 𝑃 = (Scalar‘𝐶)
hdmap14lem2.a 𝐴 = (Base‘𝑃)
hdmap14lem2.q 𝑄 = (0g𝑃)
hdmap14lem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem3.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem6.f (𝜑𝐹 = 𝑍)
Assertion
Ref Expression
hdmap14lem6 (𝜑 → ∃!𝑔𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 (𝑆𝑋)))
Distinct variable groups:   𝐴,𝑔   𝐶,𝑔   ,𝑔   𝑄,𝑔   𝑆,𝑔   𝑔,𝑋   𝜑,𝑔
Allowed substitution hints:   𝐵(𝑔)   𝑃(𝑔)   𝑅(𝑔)   · (𝑔)   𝑈(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)   0 (𝑔)   𝑍(𝑔)

Proof of Theorem hdmap14lem6
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 hdmap14lem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap14lem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmap14lem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41591 . . . . 5 (𝜑𝐶 ∈ LMod)
5 hdmap14lem2.p . . . . . 6 𝑃 = (Scalar‘𝐶)
6 hdmap14lem2.a . . . . . 6 𝐴 = (Base‘𝑃)
7 hdmap14lem2.q . . . . . 6 𝑄 = (0g𝑃)
85, 6, 7lmod0cl 20810 . . . . 5 (𝐶 ∈ LMod → 𝑄𝐴)
94, 8syl 17 . . . 4 (𝜑𝑄𝐴)
10 hdmap14lem1.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 hdmap14lem1.v . . . . . . 7 𝑉 = (Base‘𝑈)
12 eqid 2729 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
13 hdmap14lem1.s . . . . . . 7 𝑆 = ((HDMap‘𝐾)‘𝑊)
14 hdmap14lem3.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3917 . . . . . . 7 (𝜑𝑋𝑉)
161, 10, 11, 2, 12, 13, 3, 15hdmapcl 41829 . . . . . 6 (𝜑 → (𝑆𝑋) ∈ (Base‘𝐶))
17 hdmap14lem2.e . . . . . . 7 = ( ·𝑠𝐶)
18 eqid 2729 . . . . . . 7 (0g𝐶) = (0g𝐶)
1912, 5, 17, 7, 18lmod0vs 20817 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑋) ∈ (Base‘𝐶)) → (𝑄 (𝑆𝑋)) = (0g𝐶))
204, 16, 19syl2anc 584 . . . . 5 (𝜑 → (𝑄 (𝑆𝑋)) = (0g𝐶))
2120eqcomd 2735 . . . 4 (𝜑 → (0g𝐶) = (𝑄 (𝑆𝑋)))
22 oveq1 7360 . . . . 5 (𝑔 = 𝑄 → (𝑔 (𝑆𝑋)) = (𝑄 (𝑆𝑋)))
2322rspceeqv 3602 . . . 4 ((𝑄𝐴 ∧ (0g𝐶) = (𝑄 (𝑆𝑋))) → ∃𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)))
249, 21, 23syl2anc 584 . . 3 (𝜑 → ∃𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)))
25 hdmap14lem3.o . . . . . . . . . . 11 0 = (0g𝑈)
261, 10, 11, 25, 2, 18, 12, 13, 3, 14hdmapnzcl 41844 . . . . . . . . . 10 (𝜑 → (𝑆𝑋) ∈ ((Base‘𝐶) ∖ {(0g𝐶)}))
27 eldifsni 4744 . . . . . . . . . 10 ((𝑆𝑋) ∈ ((Base‘𝐶) ∖ {(0g𝐶)}) → (𝑆𝑋) ≠ (0g𝐶))
2826, 27syl 17 . . . . . . . . 9 (𝜑 → (𝑆𝑋) ≠ (0g𝐶))
2928neneqd 2930 . . . . . . . 8 (𝜑 → ¬ (𝑆𝑋) = (0g𝐶))
30293ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ¬ (𝑆𝑋) = (0g𝐶))
31 simp3l 1202 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (0g𝐶) = (𝑔 (𝑆𝑋)))
3231eqcomd 2735 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (𝑔 (𝑆𝑋)) = (0g𝐶))
331, 2, 3lcdlvec 41590 . . . . . . . . . . . 12 (𝜑𝐶 ∈ LVec)
34333ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝐶 ∈ LVec)
35 simp2l 1200 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝑔𝐴)
36163ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (𝑆𝑋) ∈ (Base‘𝐶))
3712, 17, 5, 6, 7, 18, 34, 35, 36lvecvs0or 21034 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ((𝑔 (𝑆𝑋)) = (0g𝐶) ↔ (𝑔 = 𝑄 ∨ (𝑆𝑋) = (0g𝐶))))
3832, 37mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (𝑔 = 𝑄 ∨ (𝑆𝑋) = (0g𝐶)))
3938orcomd 871 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ((𝑆𝑋) = (0g𝐶) ∨ 𝑔 = 𝑄))
4039ord 864 . . . . . . 7 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (¬ (𝑆𝑋) = (0g𝐶) → 𝑔 = 𝑄))
4130, 40mpd 15 . . . . . 6 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝑔 = 𝑄)
42 simp3r 1203 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (0g𝐶) = ( (𝑆𝑋)))
4342eqcomd 2735 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ( (𝑆𝑋)) = (0g𝐶))
44 simp2r 1201 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝐴)
4512, 17, 5, 6, 7, 18, 34, 44, 36lvecvs0or 21034 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (( (𝑆𝑋)) = (0g𝐶) ↔ ( = 𝑄 ∨ (𝑆𝑋) = (0g𝐶))))
4643, 45mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ( = 𝑄 ∨ (𝑆𝑋) = (0g𝐶)))
4746orcomd 871 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → ((𝑆𝑋) = (0g𝐶) ∨ = 𝑄))
4847ord 864 . . . . . . 7 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → (¬ (𝑆𝑋) = (0g𝐶) → = 𝑄))
4930, 48mpd 15 . . . . . 6 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → = 𝑄)
5041, 49eqtr4d 2767 . . . . 5 ((𝜑 ∧ (𝑔𝐴𝐴) ∧ ((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋)))) → 𝑔 = )
51503exp 1119 . . . 4 (𝜑 → ((𝑔𝐴𝐴) → (((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋))) → 𝑔 = )))
5251ralrimivv 3170 . . 3 (𝜑 → ∀𝑔𝐴𝐴 (((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋))) → 𝑔 = ))
53 oveq1 7360 . . . . 5 (𝑔 = → (𝑔 (𝑆𝑋)) = ( (𝑆𝑋)))
5453eqeq2d 2740 . . . 4 (𝑔 = → ((0g𝐶) = (𝑔 (𝑆𝑋)) ↔ (0g𝐶) = ( (𝑆𝑋))))
5554reu4 3693 . . 3 (∃!𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)) ↔ (∃𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)) ∧ ∀𝑔𝐴𝐴 (((0g𝐶) = (𝑔 (𝑆𝑋)) ∧ (0g𝐶) = ( (𝑆𝑋))) → 𝑔 = )))
5624, 52, 55sylanbrc 583 . 2 (𝜑 → ∃!𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋)))
57 hdmap14lem6.f . . . . . . . 8 (𝜑𝐹 = 𝑍)
5857oveq1d 7368 . . . . . . 7 (𝜑 → (𝐹 · 𝑋) = (𝑍 · 𝑋))
591, 10, 3dvhlmod 41109 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
60 hdmap14lem1.r . . . . . . . . 9 𝑅 = (Scalar‘𝑈)
61 hdmap14lem1.t . . . . . . . . 9 · = ( ·𝑠𝑈)
62 hdmap14lem1.z . . . . . . . . 9 𝑍 = (0g𝑅)
6311, 60, 61, 62, 25lmod0vs 20817 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑍 · 𝑋) = 0 )
6459, 15, 63syl2anc 584 . . . . . . 7 (𝜑 → (𝑍 · 𝑋) = 0 )
6558, 64eqtrd 2764 . . . . . 6 (𝜑 → (𝐹 · 𝑋) = 0 )
6665fveq2d 6830 . . . . 5 (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝑆0 ))
671, 10, 25, 2, 18, 13, 3hdmapval0 41832 . . . . 5 (𝜑 → (𝑆0 ) = (0g𝐶))
6866, 67eqtrd 2764 . . . 4 (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (0g𝐶))
6968eqeq1d 2731 . . 3 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝑔 (𝑆𝑋)) ↔ (0g𝐶) = (𝑔 (𝑆𝑋))))
7069reubidv 3363 . 2 (𝜑 → (∃!𝑔𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 (𝑆𝑋)) ↔ ∃!𝑔𝐴 (0g𝐶) = (𝑔 (𝑆𝑋))))
7156, 70mpbird 257 1 (𝜑 → ∃!𝑔𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 (𝑆𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3343  cdif 3902  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17139  Scalarcsca 17183   ·𝑠 cvsca 17184  0gc0g 17362  LModclmod 20782  LSpanclspn 20893  LVecclvec 21025  HLchlt 39348  LHypclh 39983  DVecHcdvh 41077  LCDualclcd 41585  HDMapchdma 41791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38951
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-0g 17364  df-mre 17507  df-mrc 17508  df-acs 17510  df-proset 18219  df-poset 18238  df-plt 18253  df-lub 18269  df-glb 18270  df-join 18271  df-meet 18272  df-p0 18348  df-p1 18349  df-lat 18357  df-clat 18424  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-subg 19021  df-cntz 19215  df-oppg 19244  df-lsm 19534  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-dvr 20305  df-nzr 20417  df-rlreg 20598  df-domn 20599  df-drng 20635  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lvec 21026  df-lsatoms 38974  df-lshyp 38975  df-lcv 39017  df-lfl 39056  df-lkr 39084  df-ldual 39122  df-oposet 39174  df-ol 39176  df-oml 39177  df-covers 39264  df-ats 39265  df-atl 39296  df-cvlat 39320  df-hlat 39349  df-llines 39497  df-lplanes 39498  df-lvols 39499  df-lines 39500  df-psubsp 39502  df-pmap 39503  df-padd 39795  df-lhyp 39987  df-laut 39988  df-ldil 40103  df-ltrn 40104  df-trl 40158  df-tgrp 40742  df-tendo 40754  df-edring 40756  df-dveca 41002  df-disoa 41028  df-dvech 41078  df-dib 41138  df-dic 41172  df-dih 41228  df-doch 41347  df-djh 41394  df-lcdual 41586  df-mapd 41624  df-hvmap 41756  df-hdmap1 41792  df-hdmap 41793
This theorem is referenced by:  hdmap14lem7  41873
  Copyright terms: Public domain W3C validator