![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divalg2 | Structured version Visualization version GIF version |
Description: The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalg2 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 11756 | . . . 4 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℤ) | |
2 | nnne0 11415 | . . . 4 ⊢ (𝐷 ∈ ℕ → 𝐷 ≠ 0) | |
3 | 1, 2 | jca 507 | . . 3 ⊢ (𝐷 ∈ ℕ → (𝐷 ∈ ℤ ∧ 𝐷 ≠ 0)) |
4 | divalg 15543 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | |
5 | divalgb 15544 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)))) | |
6 | 4, 5 | mpbid 224 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
7 | 6 | 3expb 1110 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℤ ∧ 𝐷 ≠ 0)) → ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
8 | 3, 7 | sylan2 586 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
9 | nnre 11387 | . . . . . . 7 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℝ) | |
10 | nnnn0 11655 | . . . . . . . 8 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℕ0) | |
11 | 10 | nn0ge0d 11710 | . . . . . . 7 ⊢ (𝐷 ∈ ℕ → 0 ≤ 𝐷) |
12 | 9, 11 | absidd 14576 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → (abs‘𝐷) = 𝐷) |
13 | 12 | breq2d 4900 | . . . . 5 ⊢ (𝐷 ∈ ℕ → (𝑟 < (abs‘𝐷) ↔ 𝑟 < 𝐷)) |
14 | 13 | anbi1d 623 | . . . 4 ⊢ (𝐷 ∈ ℕ → ((𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)) ↔ (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟)))) |
15 | 14 | reubidv 3314 | . . 3 ⊢ (𝐷 ∈ ℕ → (∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟)))) |
16 | 15 | adantl 475 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟)))) |
17 | 8, 16 | mpbid 224 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∃wrex 3091 ∃!wreu 3092 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 0cc0 10274 + caddc 10277 · cmul 10279 < clt 10413 ≤ cle 10414 − cmin 10608 ℕcn 11379 ℕ0cn0 11647 ℤcz 11733 abscabs 14387 ∥ cdvds 15396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-rp 12143 df-fz 12649 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-dvds 15397 |
This theorem is referenced by: divalgmod 15546 ndvdssub 15549 |
Copyright terms: Public domain | W3C validator |