MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climbdd Structured version   Visualization version   GIF version

Theorem climbdd 15623
Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypothesis
Ref Expression
climcau.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climbdd ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝑀,𝑥   𝑘,𝑍,𝑥

Proof of Theorem climbdd
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
2 climcau.1 . . . . 5 𝑍 = (ℤ𝑀)
32climcau 15622 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦)
433adant3 1131 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦)
52caubnd 15310 . . 3 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥)
61, 4, 5syl2anc 583 . 2 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥)
7 r19.26 3110 . . . . . . 7 (∀𝑘𝑍 ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) ↔ (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥))
8 simpr 484 . . . . . . . . . . 11 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
98abscld 15388 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑘)) ∈ ℝ)
10 simpllr 773 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → 𝑥 ∈ ℝ)
11 ltle 11307 . . . . . . . . . 10 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑥 → (abs‘(𝐹𝑘)) ≤ 𝑥))
129, 10, 11syl2anc 583 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) < 𝑥 → (abs‘(𝐹𝑘)) ≤ 𝑥))
1312expimpd 453 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) → (abs‘(𝐹𝑘)) ≤ 𝑥))
1413ralimdva 3166 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → (∀𝑘𝑍 ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
157, 14biimtrrid 242 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
1615exp4b 430 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ ℝ → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))))
1716com23 86 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝑥 ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))))
18173impia 1116 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (𝑥 ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)))
1918reximdvai 3164 . 2 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
206, 19mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069   class class class wbr 5148  dom cdm 5676  cfv 6543  (class class class)co 7412  cc 11111  cr 11112   < clt 11253  cle 11254  cmin 11449  cz 12563  cuz 12827  +crp 12979  abscabs 15186  cli 15433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-fz 13490  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437
This theorem is referenced by:  mtestbdd  26154  climbddf  44702  sge0isum  45442
  Copyright terms: Public domain W3C validator