![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climbdd | Structured version Visualization version GIF version |
Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
Ref | Expression |
---|---|
climcau.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
climbdd | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) | |
2 | climcau.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | climcau 15622 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑦) |
4 | 3 | 3adant3 1131 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑦) |
5 | 2 | caubnd 15310 | . . 3 ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥) |
6 | 1, 4, 5 | syl2anc 583 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥) |
7 | r19.26 3110 | . . . . . . 7 ⊢ (∀𝑘 ∈ 𝑍 ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐹‘𝑘)) < 𝑥) ↔ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥)) | |
8 | simpr 484 | . . . . . . . . . . 11 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → (𝐹‘𝑘) ∈ ℂ) | |
9 | 8 | abscld 15388 | . . . . . . . . . 10 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
10 | simpllr 773 | . . . . . . . . . 10 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → 𝑥 ∈ ℝ) | |
11 | ltle 11307 | . . . . . . . . . 10 ⊢ (((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹‘𝑘)) < 𝑥 → (abs‘(𝐹‘𝑘)) ≤ 𝑥)) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . . . . 9 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘(𝐹‘𝑘)) < 𝑥 → (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
13 | 12 | expimpd 453 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐹‘𝑘)) < 𝑥) → (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
14 | 13 | ralimdva 3166 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
15 | 7, 14 | biimtrrid 242 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
16 | 15 | exp4b 430 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ ℝ → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)))) |
17 | 16 | com23 86 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → (𝑥 ∈ ℝ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)))) |
18 | 17 | 3impia 1116 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → (𝑥 ∈ ℝ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥))) |
19 | 18 | reximdvai 3164 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
20 | 6, 19 | mpd 15 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 class class class wbr 5148 dom cdm 5676 ‘cfv 6543 (class class class)co 7412 ℂcc 11111 ℝcr 11112 < clt 11253 ≤ cle 11254 − cmin 11449 ℤcz 12563 ℤ≥cuz 12827 ℝ+crp 12979 abscabs 15186 ⇝ cli 15433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 |
This theorem is referenced by: mtestbdd 26154 climbddf 44702 sge0isum 45442 |
Copyright terms: Public domain | W3C validator |