| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climbdd | Structured version Visualization version GIF version | ||
| Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| Ref | Expression |
|---|---|
| climcau.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| climbdd | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) | |
| 2 | climcau.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 2 | climcau 15613 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑦) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑦) |
| 5 | 2 | caubnd 15301 | . . 3 ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥) |
| 6 | 1, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥) |
| 7 | r19.26 3091 | . . . . . . 7 ⊢ (∀𝑘 ∈ 𝑍 ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐹‘𝑘)) < 𝑥) ↔ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥)) | |
| 8 | simpr 484 | . . . . . . . . . . 11 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → (𝐹‘𝑘) ∈ ℂ) | |
| 9 | 8 | abscld 15381 | . . . . . . . . . 10 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
| 10 | simpllr 775 | . . . . . . . . . 10 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → 𝑥 ∈ ℝ) | |
| 11 | ltle 11238 | . . . . . . . . . 10 ⊢ (((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹‘𝑘)) < 𝑥 → (abs‘(𝐹‘𝑘)) ≤ 𝑥)) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . . . . 9 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘(𝐹‘𝑘)) < 𝑥 → (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
| 13 | 12 | expimpd 453 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐹‘𝑘)) < 𝑥) → (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
| 14 | 13 | ralimdva 3145 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
| 15 | 7, 14 | biimtrrid 243 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
| 16 | 15 | exp4b 430 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ ℝ → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)))) |
| 17 | 16 | com23 86 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → (𝑥 ∈ ℝ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)))) |
| 18 | 17 | 3impia 1117 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → (𝑥 ∈ ℝ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥))) |
| 19 | 18 | reximdvai 3144 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
| 20 | 6, 19 | mpd 15 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 < clt 11184 ≤ cle 11185 − cmin 11381 ℤcz 12505 ℤ≥cuz 12769 ℝ+crp 12927 abscabs 15176 ⇝ cli 15426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 |
| This theorem is referenced by: mtestbdd 26290 climbddf 45658 sge0isum 46398 |
| Copyright terms: Public domain | W3C validator |