MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climbdd Structured version   Visualization version   GIF version

Theorem climbdd 15705
Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypothesis
Ref Expression
climcau.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climbdd ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝑀,𝑥   𝑘,𝑍,𝑥

Proof of Theorem climbdd
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
2 climcau.1 . . . . 5 𝑍 = (ℤ𝑀)
32climcau 15704 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦)
433adant3 1131 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦)
52caubnd 15394 . . 3 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥)
61, 4, 5syl2anc 584 . 2 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥)
7 r19.26 3109 . . . . . . 7 (∀𝑘𝑍 ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) ↔ (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥))
8 simpr 484 . . . . . . . . . . 11 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
98abscld 15472 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑘)) ∈ ℝ)
10 simpllr 776 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → 𝑥 ∈ ℝ)
11 ltle 11347 . . . . . . . . . 10 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑥 → (abs‘(𝐹𝑘)) ≤ 𝑥))
129, 10, 11syl2anc 584 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) < 𝑥 → (abs‘(𝐹𝑘)) ≤ 𝑥))
1312expimpd 453 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) → (abs‘(𝐹𝑘)) ≤ 𝑥))
1413ralimdva 3165 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → (∀𝑘𝑍 ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
157, 14biimtrrid 243 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
1615exp4b 430 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ ℝ → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))))
1716com23 86 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝑥 ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))))
18173impia 1116 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (𝑥 ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)))
1918reximdvai 3163 . 2 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
206, 19mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431  cc 11151  cr 11152   < clt 11293  cle 11294  cmin 11490  cz 12611  cuz 12876  +crp 13032  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  mtestbdd  26463  climbddf  45643  sge0isum  46383
  Copyright terms: Public domain W3C validator