Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climbdd | Structured version Visualization version GIF version |
Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
Ref | Expression |
---|---|
climcau.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
climbdd | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1140 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) | |
2 | climcau.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | climcau 15247 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑦) |
4 | 3 | 3adant3 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑦) |
5 | 2 | caubnd 14935 | . . 3 ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥) |
6 | 1, 4, 5 | syl2anc 587 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥) |
7 | r19.26 3093 | . . . . . . 7 ⊢ (∀𝑘 ∈ 𝑍 ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐹‘𝑘)) < 𝑥) ↔ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥)) | |
8 | simpr 488 | . . . . . . . . . . 11 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → (𝐹‘𝑘) ∈ ℂ) | |
9 | 8 | abscld 15013 | . . . . . . . . . 10 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
10 | simpllr 776 | . . . . . . . . . 10 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → 𝑥 ∈ ℝ) | |
11 | ltle 10934 | . . . . . . . . . 10 ⊢ (((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹‘𝑘)) < 𝑥 → (abs‘(𝐹‘𝑘)) ≤ 𝑥)) | |
12 | 9, 10, 11 | syl2anc 587 | . . . . . . . . 9 ⊢ (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘(𝐹‘𝑘)) < 𝑥 → (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
13 | 12 | expimpd 457 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐹‘𝑘)) < 𝑥) → (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
14 | 13 | ralimdva 3101 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
15 | 7, 14 | syl5bir 246 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥) → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
16 | 15 | exp4b 434 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ ℝ → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)))) |
17 | 16 | com23 86 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → (𝑥 ∈ ℝ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)))) |
18 | 17 | 3impia 1119 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → (𝑥 ∈ ℝ → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥))) |
19 | 18 | reximdvai 3198 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑥 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
20 | 6, 19 | mpd 15 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ∀wral 3062 ∃wrex 3063 class class class wbr 5062 dom cdm 5560 ‘cfv 6389 (class class class)co 7222 ℂcc 10740 ℝcr 10741 < clt 10880 ≤ cle 10881 − cmin 11075 ℤcz 12189 ℤ≥cuz 12451 ℝ+crp 12599 abscabs 14810 ⇝ cli 15058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-pre-sup 10820 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-sup 9071 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-div 11503 df-nn 11844 df-2 11906 df-3 11907 df-n0 12104 df-z 12190 df-uz 12452 df-rp 12600 df-fz 13109 df-seq 13588 df-exp 13649 df-cj 14675 df-re 14676 df-im 14677 df-sqrt 14811 df-abs 14812 df-clim 15062 |
This theorem is referenced by: mtestbdd 25310 climbddf 42918 sge0isum 43655 |
Copyright terms: Public domain | W3C validator |