Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoaddneg1 | Structured version Visualization version GIF version |
Description: Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
ringnegcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringnegcl.2 | ⊢ 𝑋 = ran 𝐺 |
ringnegcl.3 | ⊢ 𝑁 = (inv‘𝐺) |
ringaddneg.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
rngoaddneg1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegcl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 35663 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | ringnegcl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | ringaddneg.4 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
5 | ringnegcl.3 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
6 | 3, 4, 5 | grporinv 28423 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) |
7 | 2, 6 | sylan 583 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ran crn 5529 ‘cfv 6340 (class class class)co 7156 1st c1st 7697 GrpOpcgr 28385 GIdcgi 28386 invcgn 28387 RingOpscrngo 35647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-1st 7699 df-2nd 7700 df-grpo 28389 df-gid 28390 df-ginv 28391 df-ablo 28441 df-rngo 35648 |
This theorem is referenced by: rngonegmn1l 35694 |
Copyright terms: Public domain | W3C validator |