Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoaddneg1 Structured version   Visualization version   GIF version

Theorem rngoaddneg1 37876
Description: Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ringnegcl.1 𝐺 = (1st𝑅)
ringnegcl.2 𝑋 = ran 𝐺
ringnegcl.3 𝑁 = (inv‘𝐺)
ringaddneg.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngoaddneg1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑍)

Proof of Theorem rngoaddneg1
StepHypRef Expression
1 ringnegcl.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 37858 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringnegcl.2 . . 3 𝑋 = ran 𝐺
4 ringaddneg.4 . . 3 𝑍 = (GId‘𝐺)
5 ringnegcl.3 . . 3 𝑁 = (inv‘𝐺)
63, 4, 5grporinv 30493 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑍)
72, 6sylan 580 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ran crn 5668  cfv 6542  (class class class)co 7414  1st c1st 7995  GrpOpcgr 30455  GIdcgi 30456  invcgn 30457  RingOpscrngo 37842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-1st 7997  df-2nd 7998  df-grpo 30459  df-gid 30460  df-ginv 30461  df-ablo 30511  df-rngo 37843
This theorem is referenced by:  rngonegmn1l  37889
  Copyright terms: Public domain W3C validator