| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoaddneg1 | Structured version Visualization version GIF version | ||
| Description: Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| ringnegcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ringnegcl.2 | ⊢ 𝑋 = ran 𝐺 |
| ringnegcl.3 | ⊢ 𝑁 = (inv‘𝐺) |
| ringaddneg.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| rngoaddneg1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegcl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 38023 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | ringnegcl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | ringaddneg.4 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | ringnegcl.3 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
| 6 | 3, 4, 5 | grporinv 30528 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) |
| 7 | 2, 6 | sylan 580 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ran crn 5622 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 GrpOpcgr 30490 GIdcgi 30491 invcgn 30492 RingOpscrngo 38007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-1st 7930 df-2nd 7931 df-grpo 30494 df-gid 30495 df-ginv 30496 df-ablo 30546 df-rngo 38008 |
| This theorem is referenced by: rngonegmn1l 38054 |
| Copyright terms: Public domain | W3C validator |