| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoaddneg1 | Structured version Visualization version GIF version | ||
| Description: Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| ringnegcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ringnegcl.2 | ⊢ 𝑋 = ran 𝐺 |
| ringnegcl.3 | ⊢ 𝑁 = (inv‘𝐺) |
| ringaddneg.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| rngoaddneg1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegcl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37858 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | ringnegcl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | ringaddneg.4 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | ringnegcl.3 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
| 6 | 3, 4, 5 | grporinv 30493 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) |
| 7 | 2, 6 | sylan 580 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ran crn 5668 ‘cfv 6542 (class class class)co 7414 1st c1st 7995 GrpOpcgr 30455 GIdcgi 30456 invcgn 30457 RingOpscrngo 37842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-1st 7997 df-2nd 7998 df-grpo 30459 df-gid 30460 df-ginv 30461 df-ablo 30511 df-rngo 37843 |
| This theorem is referenced by: rngonegmn1l 37889 |
| Copyright terms: Public domain | W3C validator |