Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoaddneg2 Structured version   Visualization version   GIF version

Theorem rngoaddneg2 36014
Description: Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ringnegcl.1 𝐺 = (1st𝑅)
ringnegcl.2 𝑋 = ran 𝐺
ringnegcl.3 𝑁 = (inv‘𝐺)
ringaddneg.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngoaddneg2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑍)

Proof of Theorem rngoaddneg2
StepHypRef Expression
1 ringnegcl.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 35995 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringnegcl.2 . . 3 𝑋 = ran 𝐺
4 ringaddneg.4 . . 3 𝑍 = (GId‘𝐺)
5 ringnegcl.3 . . 3 𝑁 = (inv‘𝐺)
63, 4, 5grpolinv 28789 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑍)
72, 6sylan 579 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ran crn 5581  cfv 6418  (class class class)co 7255  1st c1st 7802  GrpOpcgr 28752  GIdcgi 28753  invcgn 28754  RingOpscrngo 35979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-rngo 35980
This theorem is referenced by:  rngonegmn1r  36027
  Copyright terms: Public domain W3C validator