| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grporinv | Structured version Visualization version GIF version | ||
| Description: The right inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpinv.1 | ⊢ 𝑋 = ran 𝐺 |
| grpinv.2 | ⊢ 𝑈 = (GId‘𝐺) |
| grpinv.3 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| grporinv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpinv.2 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
| 3 | grpinv.3 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
| 4 | 1, 2, 3 | grpoinv 30491 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) |
| 5 | 4 | simprd 495 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ran crn 5668 ‘cfv 6542 (class class class)co 7414 GrpOpcgr 30455 GIdcgi 30456 invcgn 30457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-grpo 30459 df-gid 30460 df-ginv 30461 |
| This theorem is referenced by: grpoinvid1 30494 grpoinvid2 30495 grpo2inv 30497 grpoinvop 30499 grpodivid 30508 vcm 30542 nvrinv 30617 rngoaddneg1 37876 |
| Copyright terms: Public domain | W3C validator |