| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grporinv | Structured version Visualization version GIF version | ||
| Description: The right inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpinv.1 | ⊢ 𝑋 = ran 𝐺 |
| grpinv.2 | ⊢ 𝑈 = (GId‘𝐺) |
| grpinv.3 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| grporinv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpinv.2 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
| 3 | grpinv.3 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
| 4 | 1, 2, 3 | grpoinv 30454 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) |
| 5 | 4 | simprd 495 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ran crn 5639 ‘cfv 6511 (class class class)co 7387 GrpOpcgr 30418 GIdcgi 30419 invcgn 30420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-grpo 30422 df-gid 30423 df-ginv 30424 |
| This theorem is referenced by: grpoinvid1 30457 grpoinvid2 30458 grpo2inv 30460 grpoinvop 30462 grpodivid 30471 vcm 30505 nvrinv 30580 rngoaddneg1 37922 |
| Copyright terms: Public domain | W3C validator |