Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmasso3 Structured version   Visualization version   GIF version

Theorem rprmasso3 33534
Description: In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
rprmasso.b 𝐵 = (Base‘𝑅)
rprmasso.p 𝑃 = (RPrime‘𝑅)
rprmasso.d = (∥r𝑅)
rprmasso.r (𝜑𝑅 ∈ IDomn)
rprmasso.x (𝜑𝑋𝑃)
rprmasso.1 (𝜑𝑋 𝑌)
rprmasso2.y (𝜑𝑌𝑃)
rprmasso3.1 · = (.r𝑅)
rprmasso3.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
rprmasso3 (𝜑 → ∃𝑡𝑈 (𝑡 · 𝑋) = 𝑌)
Distinct variable groups:   𝑡,   𝑡,𝐵   𝑡,𝑅   𝑡,𝑋   𝑡,𝑌   𝜑,𝑡   𝑡, ·   𝑡,𝑈
Allowed substitution hint:   𝑃(𝑡)

Proof of Theorem rprmasso3
StepHypRef Expression
1 rprmasso.1 . 2 (𝜑𝑋 𝑌)
2 rprmasso.b . . 3 𝐵 = (Base‘𝑅)
3 rprmasso.p . . 3 𝑃 = (RPrime‘𝑅)
4 rprmasso.d . . 3 = (∥r𝑅)
5 rprmasso.r . . 3 (𝜑𝑅 ∈ IDomn)
6 rprmasso.x . . 3 (𝜑𝑋𝑃)
7 rprmasso2.y . . 3 (𝜑𝑌𝑃)
82, 3, 4, 5, 6, 1, 7rprmasso2 33533 . 2 (𝜑𝑌 𝑋)
9 eqid 2734 . . 3 (RSpan‘𝑅) = (RSpan‘𝑅)
102, 3, 5, 6rprmcl 33525 . . 3 (𝜑𝑋𝐵)
112, 3, 5, 7rprmcl 33525 . . 3 (𝜑𝑌𝐵)
12 rprmasso3.u . . 3 𝑈 = (Unit‘𝑅)
13 rprmasso3.1 . . 3 · = (.r𝑅)
142, 9, 4, 10, 11, 12, 13, 5dvdsruasso 33392 . 2 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑡𝑈 (𝑡 · 𝑋) = 𝑌))
151, 8, 14mpbi2and 712 1 (𝜑 → ∃𝑡𝑈 (𝑡 · 𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  wrex 3067   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  .rcmulr 17298  rcdsr 20370  Unitcui 20371  RPrimecrpm 20448  IDomncidom 20709  RSpancrsp 21234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-rprm 20449  df-nzr 20529  df-domn 20711  df-idom 20712
This theorem is referenced by:  1arithidom  33544
  Copyright terms: Public domain W3C validator