| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitmulrprm | Structured version Visualization version GIF version | ||
| Description: A ring unit multiplied by a ring prime is a ring prime. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| unitmulrprm.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| unitmulrprm.u | ⊢ 𝑈 = (Unit‘𝑅) |
| unitmulrprm.t | ⊢ · = (.r‘𝑅) |
| unitmulrprm.r | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| unitmulrprm.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| unitmulrprm.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| unitmulrprm | ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | unitmulrprm.p | . 2 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 3 | eqid 2730 | . 2 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 4 | unitmulrprm.r | . 2 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 5 | unitmulrprm.q | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
| 6 | 1, 2, 4, 5 | rprmcl 33496 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝑅)) |
| 7 | oveq1 7397 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 · 𝑄) = (𝐼 · 𝑄)) | |
| 8 | 7 | eqeq1d 2732 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 · 𝑄) = (𝐼 · 𝑄) ↔ (𝐼 · 𝑄) = (𝐼 · 𝑄))) |
| 9 | unitmulrprm.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 10 | unitmulrprm.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 11 | 1, 10 | unitcl 20291 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ (Base‘𝑅)) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (Base‘𝑅)) |
| 13 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (𝐼 · 𝑄) = (𝐼 · 𝑄)) | |
| 14 | 8, 12, 13 | rspcedvdw 3594 | . . 3 ⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖 · 𝑄) = (𝐼 · 𝑄)) |
| 15 | unitmulrprm.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 16 | 1, 3, 15 | dvdsr 20278 | . . 3 ⊢ (𝑄(∥r‘𝑅)(𝐼 · 𝑄) ↔ (𝑄 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖 · 𝑄) = (𝐼 · 𝑄))) |
| 17 | 6, 14, 16 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝑄(∥r‘𝑅)(𝐼 · 𝑄)) |
| 18 | 4 | idomringd 20644 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | 1, 15, 18, 12, 6 | ringcld 20176 | . . 3 ⊢ (𝜑 → (𝐼 · 𝑄) ∈ (Base‘𝑅)) |
| 20 | oveq1 7397 | . . . . 5 ⊢ (𝑖 = ((invr‘𝑅)‘𝐼) → (𝑖 · (𝐼 · 𝑄)) = (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄))) | |
| 21 | 20 | eqeq1d 2732 | . . . 4 ⊢ (𝑖 = ((invr‘𝑅)‘𝐼) → ((𝑖 · (𝐼 · 𝑄)) = 𝑄 ↔ (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄)) = 𝑄)) |
| 22 | eqid 2730 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 23 | 10, 22, 1 | ringinvcl 20308 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((invr‘𝑅)‘𝐼) ∈ (Base‘𝑅)) |
| 24 | 18, 9, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invr‘𝑅)‘𝐼) ∈ (Base‘𝑅)) |
| 25 | eqid 2730 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 26 | 10, 22, 15, 25 | unitlinv 20309 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (((invr‘𝑅)‘𝐼) · 𝐼) = (1r‘𝑅)) |
| 27 | 18, 9, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (((invr‘𝑅)‘𝐼) · 𝐼) = (1r‘𝑅)) |
| 28 | 27 | oveq1d 7405 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝐼) · 𝐼) · 𝑄) = ((1r‘𝑅) · 𝑄)) |
| 29 | 1, 15, 18, 24, 12, 6 | ringassd 20173 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝐼) · 𝐼) · 𝑄) = (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄))) |
| 30 | 1, 15, 25, 18, 6 | ringlidmd 20188 | . . . . 5 ⊢ (𝜑 → ((1r‘𝑅) · 𝑄) = 𝑄) |
| 31 | 28, 29, 30 | 3eqtr3d 2773 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄)) = 𝑄) |
| 32 | 21, 24, 31 | rspcedvdw 3594 | . . 3 ⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖 · (𝐼 · 𝑄)) = 𝑄) |
| 33 | 1, 3, 15 | dvdsr 20278 | . . 3 ⊢ ((𝐼 · 𝑄)(∥r‘𝑅)𝑄 ↔ ((𝐼 · 𝑄) ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖 · (𝐼 · 𝑄)) = 𝑄)) |
| 34 | 19, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝜑 → (𝐼 · 𝑄)(∥r‘𝑅)𝑄) |
| 35 | 1, 2, 3, 4, 5, 17, 34 | rprmasso 33503 | 1 ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 1rcur 20097 Ringcrg 20149 ∥rcdsr 20270 Unitcui 20271 invrcinvr 20303 RPrimecrpm 20348 IDomncidom 20609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rprm 20349 df-subrg 20486 df-idom 20612 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-prmidl 33414 |
| This theorem is referenced by: 1arithufdlem3 33524 |
| Copyright terms: Public domain | W3C validator |