| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitmulrprm | Structured version Visualization version GIF version | ||
| Description: A ring unit multiplied by a ring prime is a ring prime. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| unitmulrprm.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| unitmulrprm.u | ⊢ 𝑈 = (Unit‘𝑅) |
| unitmulrprm.t | ⊢ · = (.r‘𝑅) |
| unitmulrprm.r | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| unitmulrprm.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| unitmulrprm.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| unitmulrprm | ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | unitmulrprm.p | . 2 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 4 | unitmulrprm.r | . 2 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 5 | unitmulrprm.q | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
| 6 | 1, 2, 4, 5 | rprmcl 33465 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝑅)) |
| 7 | oveq1 7360 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 · 𝑄) = (𝐼 · 𝑄)) | |
| 8 | 7 | eqeq1d 2731 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 · 𝑄) = (𝐼 · 𝑄) ↔ (𝐼 · 𝑄) = (𝐼 · 𝑄))) |
| 9 | unitmulrprm.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 10 | unitmulrprm.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 11 | 1, 10 | unitcl 20278 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ (Base‘𝑅)) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (Base‘𝑅)) |
| 13 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝐼 · 𝑄) = (𝐼 · 𝑄)) | |
| 14 | 8, 12, 13 | rspcedvdw 3582 | . . 3 ⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖 · 𝑄) = (𝐼 · 𝑄)) |
| 15 | unitmulrprm.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 16 | 1, 3, 15 | dvdsr 20265 | . . 3 ⊢ (𝑄(∥r‘𝑅)(𝐼 · 𝑄) ↔ (𝑄 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖 · 𝑄) = (𝐼 · 𝑄))) |
| 17 | 6, 14, 16 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝑄(∥r‘𝑅)(𝐼 · 𝑄)) |
| 18 | 4 | idomringd 20631 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | 1, 15, 18, 12, 6 | ringcld 20163 | . . 3 ⊢ (𝜑 → (𝐼 · 𝑄) ∈ (Base‘𝑅)) |
| 20 | oveq1 7360 | . . . . 5 ⊢ (𝑖 = ((invr‘𝑅)‘𝐼) → (𝑖 · (𝐼 · 𝑄)) = (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄))) | |
| 21 | 20 | eqeq1d 2731 | . . . 4 ⊢ (𝑖 = ((invr‘𝑅)‘𝐼) → ((𝑖 · (𝐼 · 𝑄)) = 𝑄 ↔ (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄)) = 𝑄)) |
| 22 | eqid 2729 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 23 | 10, 22, 1 | ringinvcl 20295 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((invr‘𝑅)‘𝐼) ∈ (Base‘𝑅)) |
| 24 | 18, 9, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invr‘𝑅)‘𝐼) ∈ (Base‘𝑅)) |
| 25 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 26 | 10, 22, 15, 25 | unitlinv 20296 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (((invr‘𝑅)‘𝐼) · 𝐼) = (1r‘𝑅)) |
| 27 | 18, 9, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (((invr‘𝑅)‘𝐼) · 𝐼) = (1r‘𝑅)) |
| 28 | 27 | oveq1d 7368 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝐼) · 𝐼) · 𝑄) = ((1r‘𝑅) · 𝑄)) |
| 29 | 1, 15, 18, 24, 12, 6 | ringassd 20160 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝐼) · 𝐼) · 𝑄) = (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄))) |
| 30 | 1, 15, 25, 18, 6 | ringlidmd 20175 | . . . . 5 ⊢ (𝜑 → ((1r‘𝑅) · 𝑄) = 𝑄) |
| 31 | 28, 29, 30 | 3eqtr3d 2772 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄)) = 𝑄) |
| 32 | 21, 24, 31 | rspcedvdw 3582 | . . 3 ⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖 · (𝐼 · 𝑄)) = 𝑄) |
| 33 | 1, 3, 15 | dvdsr 20265 | . . 3 ⊢ ((𝐼 · 𝑄)(∥r‘𝑅)𝑄 ↔ ((𝐼 · 𝑄) ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖 · (𝐼 · 𝑄)) = 𝑄)) |
| 34 | 19, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝜑 → (𝐼 · 𝑄)(∥r‘𝑅)𝑄) |
| 35 | 1, 2, 3, 4, 5, 17, 34 | rprmasso 33472 | 1 ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 1rcur 20084 Ringcrg 20136 ∥rcdsr 20257 Unitcui 20258 invrcinvr 20290 RPrimecrpm 20335 IDomncidom 20596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-rprm 20336 df-subrg 20473 df-idom 20599 df-lmod 20783 df-lss 20853 df-lsp 20893 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-prmidl 33383 |
| This theorem is referenced by: 1arithufdlem3 33493 |
| Copyright terms: Public domain | W3C validator |