| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitmulrprm | Structured version Visualization version GIF version | ||
| Description: A ring unit multiplied by a ring prime is a ring prime. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| unitmulrprm.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| unitmulrprm.u | ⊢ 𝑈 = (Unit‘𝑅) |
| unitmulrprm.t | ⊢ · = (.r‘𝑅) |
| unitmulrprm.r | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| unitmulrprm.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| unitmulrprm.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| unitmulrprm | ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | unitmulrprm.p | . 2 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 3 | eqid 2735 | . 2 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 4 | unitmulrprm.r | . 2 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 5 | unitmulrprm.q | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
| 6 | 1, 2, 4, 5 | rprmcl 33533 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝑅)) |
| 7 | oveq1 7412 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 · 𝑄) = (𝐼 · 𝑄)) | |
| 8 | 7 | eqeq1d 2737 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 · 𝑄) = (𝐼 · 𝑄) ↔ (𝐼 · 𝑄) = (𝐼 · 𝑄))) |
| 9 | unitmulrprm.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 10 | unitmulrprm.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 11 | 1, 10 | unitcl 20335 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ (Base‘𝑅)) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (Base‘𝑅)) |
| 13 | eqidd 2736 | . . . 4 ⊢ (𝜑 → (𝐼 · 𝑄) = (𝐼 · 𝑄)) | |
| 14 | 8, 12, 13 | rspcedvdw 3604 | . . 3 ⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖 · 𝑄) = (𝐼 · 𝑄)) |
| 15 | unitmulrprm.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 16 | 1, 3, 15 | dvdsr 20322 | . . 3 ⊢ (𝑄(∥r‘𝑅)(𝐼 · 𝑄) ↔ (𝑄 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖 · 𝑄) = (𝐼 · 𝑄))) |
| 17 | 6, 14, 16 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝑄(∥r‘𝑅)(𝐼 · 𝑄)) |
| 18 | 4 | idomringd 20688 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | 1, 15, 18, 12, 6 | ringcld 20220 | . . 3 ⊢ (𝜑 → (𝐼 · 𝑄) ∈ (Base‘𝑅)) |
| 20 | oveq1 7412 | . . . . 5 ⊢ (𝑖 = ((invr‘𝑅)‘𝐼) → (𝑖 · (𝐼 · 𝑄)) = (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄))) | |
| 21 | 20 | eqeq1d 2737 | . . . 4 ⊢ (𝑖 = ((invr‘𝑅)‘𝐼) → ((𝑖 · (𝐼 · 𝑄)) = 𝑄 ↔ (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄)) = 𝑄)) |
| 22 | eqid 2735 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 23 | 10, 22, 1 | ringinvcl 20352 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((invr‘𝑅)‘𝐼) ∈ (Base‘𝑅)) |
| 24 | 18, 9, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invr‘𝑅)‘𝐼) ∈ (Base‘𝑅)) |
| 25 | eqid 2735 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 26 | 10, 22, 15, 25 | unitlinv 20353 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (((invr‘𝑅)‘𝐼) · 𝐼) = (1r‘𝑅)) |
| 27 | 18, 9, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (((invr‘𝑅)‘𝐼) · 𝐼) = (1r‘𝑅)) |
| 28 | 27 | oveq1d 7420 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝐼) · 𝐼) · 𝑄) = ((1r‘𝑅) · 𝑄)) |
| 29 | 1, 15, 18, 24, 12, 6 | ringassd 20217 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝐼) · 𝐼) · 𝑄) = (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄))) |
| 30 | 1, 15, 25, 18, 6 | ringlidmd 20232 | . . . . 5 ⊢ (𝜑 → ((1r‘𝑅) · 𝑄) = 𝑄) |
| 31 | 28, 29, 30 | 3eqtr3d 2778 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄)) = 𝑄) |
| 32 | 21, 24, 31 | rspcedvdw 3604 | . . 3 ⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖 · (𝐼 · 𝑄)) = 𝑄) |
| 33 | 1, 3, 15 | dvdsr 20322 | . . 3 ⊢ ((𝐼 · 𝑄)(∥r‘𝑅)𝑄 ↔ ((𝐼 · 𝑄) ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖 · (𝐼 · 𝑄)) = 𝑄)) |
| 34 | 19, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝜑 → (𝐼 · 𝑄)(∥r‘𝑅)𝑄) |
| 35 | 1, 2, 3, 4, 5, 17, 34 | rprmasso 33540 | 1 ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 1rcur 20141 Ringcrg 20193 ∥rcdsr 20314 Unitcui 20315 invrcinvr 20347 RPrimecrpm 20392 IDomncidom 20653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-rprm 20393 df-subrg 20530 df-idom 20656 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-prmidl 33451 |
| This theorem is referenced by: 1arithufdlem3 33561 |
| Copyright terms: Public domain | W3C validator |