| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitmulrprm | Structured version Visualization version GIF version | ||
| Description: A ring unit multiplied by a ring prime is a ring prime. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| unitmulrprm.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| unitmulrprm.u | ⊢ 𝑈 = (Unit‘𝑅) |
| unitmulrprm.t | ⊢ · = (.r‘𝑅) |
| unitmulrprm.r | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| unitmulrprm.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| unitmulrprm.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| unitmulrprm | ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | unitmulrprm.p | . 2 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 3 | eqid 2731 | . 2 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 4 | unitmulrprm.r | . 2 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 5 | unitmulrprm.q | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
| 6 | 1, 2, 4, 5 | rprmcl 33478 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝑅)) |
| 7 | oveq1 7353 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 · 𝑄) = (𝐼 · 𝑄)) | |
| 8 | 7 | eqeq1d 2733 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 · 𝑄) = (𝐼 · 𝑄) ↔ (𝐼 · 𝑄) = (𝐼 · 𝑄))) |
| 9 | unitmulrprm.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 10 | unitmulrprm.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 11 | 1, 10 | unitcl 20291 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ (Base‘𝑅)) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (Base‘𝑅)) |
| 13 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝐼 · 𝑄) = (𝐼 · 𝑄)) | |
| 14 | 8, 12, 13 | rspcedvdw 3580 | . . 3 ⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖 · 𝑄) = (𝐼 · 𝑄)) |
| 15 | unitmulrprm.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 16 | 1, 3, 15 | dvdsr 20278 | . . 3 ⊢ (𝑄(∥r‘𝑅)(𝐼 · 𝑄) ↔ (𝑄 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖 · 𝑄) = (𝐼 · 𝑄))) |
| 17 | 6, 14, 16 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝑄(∥r‘𝑅)(𝐼 · 𝑄)) |
| 18 | 4 | idomringd 20641 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | 1, 15, 18, 12, 6 | ringcld 20176 | . . 3 ⊢ (𝜑 → (𝐼 · 𝑄) ∈ (Base‘𝑅)) |
| 20 | oveq1 7353 | . . . . 5 ⊢ (𝑖 = ((invr‘𝑅)‘𝐼) → (𝑖 · (𝐼 · 𝑄)) = (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄))) | |
| 21 | 20 | eqeq1d 2733 | . . . 4 ⊢ (𝑖 = ((invr‘𝑅)‘𝐼) → ((𝑖 · (𝐼 · 𝑄)) = 𝑄 ↔ (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄)) = 𝑄)) |
| 22 | eqid 2731 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 23 | 10, 22, 1 | ringinvcl 20308 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((invr‘𝑅)‘𝐼) ∈ (Base‘𝑅)) |
| 24 | 18, 9, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invr‘𝑅)‘𝐼) ∈ (Base‘𝑅)) |
| 25 | eqid 2731 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 26 | 10, 22, 15, 25 | unitlinv 20309 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (((invr‘𝑅)‘𝐼) · 𝐼) = (1r‘𝑅)) |
| 27 | 18, 9, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (((invr‘𝑅)‘𝐼) · 𝐼) = (1r‘𝑅)) |
| 28 | 27 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝐼) · 𝐼) · 𝑄) = ((1r‘𝑅) · 𝑄)) |
| 29 | 1, 15, 18, 24, 12, 6 | ringassd 20173 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝐼) · 𝐼) · 𝑄) = (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄))) |
| 30 | 1, 15, 25, 18, 6 | ringlidmd 20188 | . . . . 5 ⊢ (𝜑 → ((1r‘𝑅) · 𝑄) = 𝑄) |
| 31 | 28, 29, 30 | 3eqtr3d 2774 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝐼) · (𝐼 · 𝑄)) = 𝑄) |
| 32 | 21, 24, 31 | rspcedvdw 3580 | . . 3 ⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖 · (𝐼 · 𝑄)) = 𝑄) |
| 33 | 1, 3, 15 | dvdsr 20278 | . . 3 ⊢ ((𝐼 · 𝑄)(∥r‘𝑅)𝑄 ↔ ((𝐼 · 𝑄) ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖 · (𝐼 · 𝑄)) = 𝑄)) |
| 34 | 19, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝜑 → (𝐼 · 𝑄)(∥r‘𝑅)𝑄) |
| 35 | 1, 2, 3, 4, 5, 17, 34 | rprmasso 33485 | 1 ⊢ (𝜑 → (𝐼 · 𝑄) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 .rcmulr 17159 1rcur 20097 Ringcrg 20149 ∥rcdsr 20270 Unitcui 20271 invrcinvr 20303 RPrimecrpm 20348 IDomncidom 20606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rprm 20349 df-subrg 20483 df-idom 20609 df-lmod 20793 df-lss 20863 df-lsp 20903 df-sra 21105 df-rgmod 21106 df-lidl 21143 df-rsp 21144 df-prmidl 33396 |
| This theorem is referenced by: 1arithufdlem3 33506 |
| Copyright terms: Public domain | W3C validator |