Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm4 | Structured version Visualization version GIF version |
Description: A completely normal topology is a topology in which two separated sets can be separated by neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm4 | ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛 ∩ 𝑚) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3 46246 | . 2 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | |
2 | id 22 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
3 | 2 | sepnsepo 46217 | . . . . 5 ⊢ (𝐽 ∈ Top → (∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛 ∩ 𝑚) = ∅ ↔ ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) |
4 | 3 | imbi2d 341 | . . . 4 ⊢ (𝐽 ∈ Top → ((((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛 ∩ 𝑚) = ∅) ↔ (((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
5 | 4 | 2ralbidv 3129 | . . 3 ⊢ (𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛 ∩ 𝑚) = ∅) ↔ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
6 | 5 | pm5.32i 575 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛 ∩ 𝑚) = ∅)) ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
7 | 1, 6 | bitr4i 277 | 1 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛 ∩ 𝑚) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 clsccl 22169 neicnei 22248 CNrmccnrm 22462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-en 8734 df-fin 8737 df-fi 9170 df-rest 17133 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 df-cls 22172 df-nei 22249 df-nrm 22468 df-cnrm 22469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |