Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim Structured version   Visualization version   GIF version

Theorem faclim 34189
Description: An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017.)
Hypothesis
Ref Expression
faclim.1 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
Assertion
Ref Expression
faclim (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem faclim
Dummy variables 𝑎 𝑏 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim.1 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
2 seqeq3 13903 . . 3 (𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) → seq1( · , 𝐹) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))))
31, 2ax-mp 5 . 2 seq1( · , 𝐹) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))
4 oveq2 7361 . . . . . . 7 (𝑎 = 0 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑0))
5 oveq1 7360 . . . . . . . 8 (𝑎 = 0 → (𝑎 / 𝑛) = (0 / 𝑛))
65oveq2d 7369 . . . . . . 7 (𝑎 = 0 → (1 + (𝑎 / 𝑛)) = (1 + (0 / 𝑛)))
74, 6oveq12d 7371 . . . . . 6 (𝑎 = 0 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))
87mpteq2dv 5205 . . . . 5 (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))))
98seqeq3d 13906 . . . 4 (𝑎 = 0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))))
10 fveq2 6839 . . . . 5 (𝑎 = 0 → (!‘𝑎) = (!‘0))
11 fac0 14168 . . . . 5 (!‘0) = 1
1210, 11eqtrdi 2792 . . . 4 (𝑎 = 0 → (!‘𝑎) = 1)
139, 12breq12d 5116 . . 3 (𝑎 = 0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝ 1))
14 oveq2 7361 . . . . . . 7 (𝑎 = 𝑚 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝑚))
15 oveq1 7360 . . . . . . . 8 (𝑎 = 𝑚 → (𝑎 / 𝑛) = (𝑚 / 𝑛))
1615oveq2d 7369 . . . . . . 7 (𝑎 = 𝑚 → (1 + (𝑎 / 𝑛)) = (1 + (𝑚 / 𝑛)))
1714, 16oveq12d 7371 . . . . . 6 (𝑎 = 𝑚 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))
1817mpteq2dv 5205 . . . . 5 (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))
1918seqeq3d 13906 . . . 4 (𝑎 = 𝑚 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))))
20 fveq2 6839 . . . 4 (𝑎 = 𝑚 → (!‘𝑎) = (!‘𝑚))
2119, 20breq12d 5116 . . 3 (𝑎 = 𝑚 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)))
22 oveq2 7361 . . . . . . 7 (𝑎 = (𝑚 + 1) → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑(𝑚 + 1)))
23 oveq1 7360 . . . . . . . 8 (𝑎 = (𝑚 + 1) → (𝑎 / 𝑛) = ((𝑚 + 1) / 𝑛))
2423oveq2d 7369 . . . . . . 7 (𝑎 = (𝑚 + 1) → (1 + (𝑎 / 𝑛)) = (1 + ((𝑚 + 1) / 𝑛)))
2522, 24oveq12d 7371 . . . . . 6 (𝑎 = (𝑚 + 1) → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))
2625mpteq2dv 5205 . . . . 5 (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))
2726seqeq3d 13906 . . . 4 (𝑎 = (𝑚 + 1) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))))
28 fveq2 6839 . . . 4 (𝑎 = (𝑚 + 1) → (!‘𝑎) = (!‘(𝑚 + 1)))
2927, 28breq12d 5116 . . 3 (𝑎 = (𝑚 + 1) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1))))
30 oveq2 7361 . . . . . . 7 (𝑎 = 𝐴 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝐴))
31 oveq1 7360 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 / 𝑛) = (𝐴 / 𝑛))
3231oveq2d 7369 . . . . . . 7 (𝑎 = 𝐴 → (1 + (𝑎 / 𝑛)) = (1 + (𝐴 / 𝑛)))
3330, 32oveq12d 7371 . . . . . 6 (𝑎 = 𝐴 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
3433mpteq2dv 5205 . . . . 5 (𝑎 = 𝐴 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))
3534seqeq3d 13906 . . . 4 (𝑎 = 𝐴 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))))
36 fveq2 6839 . . . 4 (𝑎 = 𝐴 → (!‘𝑎) = (!‘𝐴))
3735, 36breq12d 5116 . . 3 (𝑎 = 𝐴 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴)))
38 1red 11152 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
39 nnrecre 12191 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
4038, 39readdcld 11180 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 + (1 / 𝑛)) ∈ ℝ)
4140recnd 11179 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 + (1 / 𝑛)) ∈ ℂ)
4241exp0d 14037 . . . . . . . . 9 (𝑛 ∈ ℕ → ((1 + (1 / 𝑛))↑0) = 1)
43 nncn 12157 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
44 nnne0 12183 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4543, 44div0d 11926 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (0 / 𝑛) = 0)
4645oveq2d 7369 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 + (0 / 𝑛)) = (1 + 0))
47 1p0e1 12273 . . . . . . . . . 10 (1 + 0) = 1
4846, 47eqtrdi 2792 . . . . . . . . 9 (𝑛 ∈ ℕ → (1 + (0 / 𝑛)) = 1)
4942, 48oveq12d 7371 . . . . . . . 8 (𝑛 ∈ ℕ → (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))) = (1 / 1))
50 1div1e1 11841 . . . . . . . 8 (1 / 1) = 1
5149, 50eqtrdi 2792 . . . . . . 7 (𝑛 ∈ ℕ → (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))) = 1)
5251mpteq2ia 5206 . . . . . 6 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (𝑛 ∈ ℕ ↦ 1)
53 fconstmpt 5692 . . . . . 6 (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1)
5452, 53eqtr4i 2767 . . . . 5 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (ℕ × {1})
55 seqeq3 13903 . . . . 5 ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (ℕ × {1}) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · , (ℕ × {1})))
5654, 55ax-mp 5 . . . 4 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · , (ℕ × {1}))
57 nnuz 12798 . . . . . 6 ℕ = (ℤ‘1)
58 1zzd 12530 . . . . . 6 (⊤ → 1 ∈ ℤ)
5957, 58climprod1 15840 . . . . 5 (⊤ → seq1( · , (ℕ × {1})) ⇝ 1)
6059mptru 1548 . . . 4 seq1( · , (ℕ × {1})) ⇝ 1
6156, 60eqbrtri 5124 . . 3 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝ 1
62 1zzd 12530 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → 1 ∈ ℤ)
63 simpr 485 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚))
64 seqex 13900 . . . . . . 7 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V
6564a1i 11 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V)
66 faclimlem2 34187 . . . . . . 7 (𝑚 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1))
6766adantr 481 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1))
68 elnnuz 12799 . . . . . . . . . 10 (𝑎 ∈ ℕ ↔ 𝑎 ∈ (ℤ‘1))
6968biimpi 215 . . . . . . . . 9 (𝑎 ∈ ℕ → 𝑎 ∈ (ℤ‘1))
7069adantl 482 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → 𝑎 ∈ (ℤ‘1))
71 1rp 12911 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 1 ∈ ℝ+)
73 nnrp 12918 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7473rpreccld 12959 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7574adantl 482 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
7672, 75rpaddcld 12964 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (1 / 𝑛)) ∈ ℝ+)
77 nn0z 12520 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
7877adantr 481 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
7976, 78rpexpcld 14142 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((1 + (1 / 𝑛))↑𝑚) ∈ ℝ+)
80 1cnd 11146 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 1 ∈ ℂ)
81 nn0nndivcl 12480 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℝ)
8281recnd 11179 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℂ)
8380, 82addcomd 11353 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (𝑚 / 𝑛)) = ((𝑚 / 𝑛) + 1))
84 nn0ge0div 12568 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 0 ≤ (𝑚 / 𝑛))
8581, 84ge0p1rpd 12979 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑚 / 𝑛) + 1) ∈ ℝ+)
8683, 85eqeltrd 2838 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (𝑚 / 𝑛)) ∈ ℝ+)
8779, 86rpdivcld 12966 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈ ℝ+)
8887rpcnd 12951 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈ ℂ)
8988fmpttd 7059 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ)
90 elfznn 13462 . . . . . . . . . 10 (𝑏 ∈ (1...𝑎) → 𝑏 ∈ ℕ)
91 ffvelcdm 7029 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
9289, 90, 91syl2an 596 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
9392adantlr 713 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
94 mulcl 11131 . . . . . . . . 9 ((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑏 · 𝑥) ∈ ℂ)
9594adantl 482 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ (𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑏 · 𝑥) ∈ ℂ)
9670, 93, 95seqcl 13920 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ)
9796adantlr 713 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ)
9886, 76rpmulcld 12965 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) ∈ ℝ+)
99 nn0p1nn 12448 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
10099nnrpd 12947 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℝ+)
101 rpdivcl 12932 . . . . . . . . . . . . . . 15 (((𝑚 + 1) ∈ ℝ+𝑛 ∈ ℝ+) → ((𝑚 + 1) / 𝑛) ∈ ℝ+)
102100, 73, 101syl2an 596 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑚 + 1) / 𝑛) ∈ ℝ+)
10372, 102rpaddcld 12964 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + ((𝑚 + 1) / 𝑛)) ∈ ℝ+)
10498, 103rpdivcld 12966 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈ ℝ+)
105104rpcnd 12951 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈ ℂ)
106105fmpttd 7059 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ)
107 ffvelcdm 7029 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
108106, 90, 107syl2an 596 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
109108adantlr 713 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
11070, 109, 95seqcl 13920 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ)
111110adantlr 713 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ)
112 faclimlem3 34188 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
113 oveq2 7361 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑏 → (1 / 𝑛) = (1 / 𝑏))
114113oveq2d 7369 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑏)))
115114oveq1d 7368 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑(𝑚 + 1)) = ((1 + (1 / 𝑏))↑(𝑚 + 1)))
116 oveq2 7361 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((𝑚 + 1) / 𝑛) = ((𝑚 + 1) / 𝑏))
117116oveq2d 7369 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (1 + ((𝑚 + 1) / 𝑛)) = (1 + ((𝑚 + 1) / 𝑏)))
118115, 117oveq12d 7371 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
119 eqid 2736 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))
120 ovex 7386 . . . . . . . . . . . . 13 (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V
121118, 119, 120fvmpt 6945 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
122121adantl 482 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
123114oveq1d 7368 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑𝑚) = ((1 + (1 / 𝑏))↑𝑚))
124 oveq2 7361 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑏 → (𝑚 / 𝑛) = (𝑚 / 𝑏))
125124oveq2d 7369 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → (1 + (𝑚 / 𝑛)) = (1 + (𝑚 / 𝑏)))
126123, 125oveq12d 7371 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))))
127 eqid 2736 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))
128 ovex 7386 . . . . . . . . . . . . . 14 (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) ∈ V
129126, 127, 128fvmpt 6945 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))))
130125, 114oveq12d 7371 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) = ((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))))
131130, 117oveq12d 7371 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))
132 eqid 2736 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))
133 ovex 7386 . . . . . . . . . . . . . 14 (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V
134131, 132, 133fvmpt 6945 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))
135129, 134oveq12d 7371 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
136135adantl 482 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
137112, 122, 1363eqtr4d 2786 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
13890, 137sylan2 593 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
139138adantlr 713 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
14070, 93, 109, 139prodfmul 15767 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎)))
141140adantlr 713 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎)))
14257, 62, 63, 65, 67, 97, 111, 141climmul 15507 . . . . 5 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ ((!‘𝑚) · (𝑚 + 1)))
143 facp1 14170 . . . . . 6 (𝑚 ∈ ℕ0 → (!‘(𝑚 + 1)) = ((!‘𝑚) · (𝑚 + 1)))
144143adantr 481 . . . . 5 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → (!‘(𝑚 + 1)) = ((!‘𝑚) · (𝑚 + 1)))
145142, 144breqtrrd 5131 . . . 4 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1)))
146145ex 413 . . 3 (𝑚 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1))))
14713, 21, 29, 37, 61, 146nn0ind 12594 . 2 (𝐴 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴))
1483, 147eqbrtrid 5138 1 (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wtru 1542  wcel 2106  Vcvv 3443  {csn 4584   class class class wbr 5103  cmpt 5186   × cxp 5629  wf 6489  cfv 6493  (class class class)co 7353  cc 11045  0cc0 11047  1c1 11048   + caddc 11050   · cmul 11052   / cdiv 11808  cn 12149  0cn0 12409  cz 12495  cuz 12759  +crp 12907  ...cfz 13416  seqcseq 13898  cexp 13959  !cfa 14165  cli 15358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-1st 7917  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-er 8644  df-pm 8764  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9374  df-inf 9375  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-n0 12410  df-z 12496  df-uz 12760  df-rp 12908  df-fz 13417  df-fzo 13560  df-fl 13689  df-seq 13899  df-exp 13960  df-fac 14166  df-shft 14944  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-clim 15362  df-rlim 15363
This theorem is referenced by:  iprodfac  34190
  Copyright terms: Public domain W3C validator