Step | Hyp | Ref
| Expression |
1 | | faclim.1 |
. . 3
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) |
2 | | seqeq3 13707 |
. . 3
⊢ (𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) → seq1( · , 𝐹) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))) |
3 | 1, 2 | ax-mp 5 |
. 2
⊢ seq1(
· , 𝐹) = seq1(
· , (𝑛 ∈
ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) |
4 | | oveq2 7276 |
. . . . . . 7
⊢ (𝑎 = 0 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑0)) |
5 | | oveq1 7275 |
. . . . . . . 8
⊢ (𝑎 = 0 → (𝑎 / 𝑛) = (0 / 𝑛)) |
6 | 5 | oveq2d 7284 |
. . . . . . 7
⊢ (𝑎 = 0 → (1 + (𝑎 / 𝑛)) = (1 + (0 / 𝑛))) |
7 | 4, 6 | oveq12d 7286 |
. . . . . 6
⊢ (𝑎 = 0 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) |
8 | 7 | mpteq2dv 5180 |
. . . . 5
⊢ (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) |
9 | 8 | seqeq3d 13710 |
. . . 4
⊢ (𝑎 = 0 → seq1( · ,
(𝑛 ∈ ℕ ↦
(((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))))) |
10 | | fveq2 6768 |
. . . . 5
⊢ (𝑎 = 0 → (!‘𝑎) =
(!‘0)) |
11 | | fac0 13971 |
. . . . 5
⊢
(!‘0) = 1 |
12 | 10, 11 | eqtrdi 2795 |
. . . 4
⊢ (𝑎 = 0 → (!‘𝑎) = 1) |
13 | 9, 12 | breq12d 5091 |
. . 3
⊢ (𝑎 = 0 → (seq1( · ,
(𝑛 ∈ ℕ ↦
(((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝
1)) |
14 | | oveq2 7276 |
. . . . . . 7
⊢ (𝑎 = 𝑚 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝑚)) |
15 | | oveq1 7275 |
. . . . . . . 8
⊢ (𝑎 = 𝑚 → (𝑎 / 𝑛) = (𝑚 / 𝑛)) |
16 | 15 | oveq2d 7284 |
. . . . . . 7
⊢ (𝑎 = 𝑚 → (1 + (𝑎 / 𝑛)) = (1 + (𝑚 / 𝑛))) |
17 | 14, 16 | oveq12d 7286 |
. . . . . 6
⊢ (𝑎 = 𝑚 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))) |
18 | 17 | mpteq2dv 5180 |
. . . . 5
⊢ (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) |
19 | 18 | seqeq3d 13710 |
. . . 4
⊢ (𝑎 = 𝑚 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))) |
20 | | fveq2 6768 |
. . . 4
⊢ (𝑎 = 𝑚 → (!‘𝑎) = (!‘𝑚)) |
21 | 19, 20 | breq12d 5091 |
. . 3
⊢ (𝑎 = 𝑚 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚))) |
22 | | oveq2 7276 |
. . . . . . 7
⊢ (𝑎 = (𝑚 + 1) → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑(𝑚 + 1))) |
23 | | oveq1 7275 |
. . . . . . . 8
⊢ (𝑎 = (𝑚 + 1) → (𝑎 / 𝑛) = ((𝑚 + 1) / 𝑛)) |
24 | 23 | oveq2d 7284 |
. . . . . . 7
⊢ (𝑎 = (𝑚 + 1) → (1 + (𝑎 / 𝑛)) = (1 + ((𝑚 + 1) / 𝑛))) |
25 | 22, 24 | oveq12d 7286 |
. . . . . 6
⊢ (𝑎 = (𝑚 + 1) → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))) |
26 | 25 | mpteq2dv 5180 |
. . . . 5
⊢ (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) |
27 | 26 | seqeq3d 13710 |
. . . 4
⊢ (𝑎 = (𝑚 + 1) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))) |
28 | | fveq2 6768 |
. . . 4
⊢ (𝑎 = (𝑚 + 1) → (!‘𝑎) = (!‘(𝑚 + 1))) |
29 | 27, 28 | breq12d 5091 |
. . 3
⊢ (𝑎 = (𝑚 + 1) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1)))) |
30 | | oveq2 7276 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝐴)) |
31 | | oveq1 7275 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎 / 𝑛) = (𝐴 / 𝑛)) |
32 | 31 | oveq2d 7284 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (1 + (𝑎 / 𝑛)) = (1 + (𝐴 / 𝑛))) |
33 | 30, 32 | oveq12d 7286 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) |
34 | 33 | mpteq2dv 5180 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) |
35 | 34 | seqeq3d 13710 |
. . . 4
⊢ (𝑎 = 𝐴 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))) |
36 | | fveq2 6768 |
. . . 4
⊢ (𝑎 = 𝐴 → (!‘𝑎) = (!‘𝐴)) |
37 | 35, 36 | breq12d 5091 |
. . 3
⊢ (𝑎 = 𝐴 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴))) |
38 | | 1red 10960 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 1 ∈
ℝ) |
39 | | nnrecre 11998 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
40 | 38, 39 | readdcld 10988 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (1 + (1 /
𝑛)) ∈
ℝ) |
41 | 40 | recnd 10987 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 + (1 /
𝑛)) ∈
ℂ) |
42 | 41 | exp0d 13839 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → ((1 + (1
/ 𝑛))↑0) =
1) |
43 | | nncn 11964 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
44 | | nnne0 11990 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
45 | 43, 44 | div0d 11733 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (0 /
𝑛) = 0) |
46 | 45 | oveq2d 7284 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 + (0 /
𝑛)) = (1 +
0)) |
47 | | 1p0e1 12080 |
. . . . . . . . . 10
⊢ (1 + 0) =
1 |
48 | 46, 47 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (1 + (0 /
𝑛)) = 1) |
49 | 42, 48 | oveq12d 7286 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (((1 + (1
/ 𝑛))↑0) / (1 + (0 /
𝑛))) = (1 /
1)) |
50 | | 1div1e1 11648 |
. . . . . . . 8
⊢ (1 / 1) =
1 |
51 | 49, 50 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (((1 + (1
/ 𝑛))↑0) / (1 + (0 /
𝑛))) = 1) |
52 | 51 | mpteq2ia 5181 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑0) / (1 + (0
/ 𝑛)))) = (𝑛 ∈ ℕ ↦
1) |
53 | | fconstmpt 5648 |
. . . . . 6
⊢ (ℕ
× {1}) = (𝑛 ∈
ℕ ↦ 1) |
54 | 52, 53 | eqtr4i 2770 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑0) / (1 + (0
/ 𝑛)))) = (ℕ ×
{1}) |
55 | | seqeq3 13707 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑0) / (1 + (0
/ 𝑛)))) = (ℕ ×
{1}) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · ,
(ℕ × {1}))) |
56 | 54, 55 | ax-mp 5 |
. . . 4
⊢ seq1(
· , (𝑛 ∈
ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · , (ℕ ×
{1})) |
57 | | nnuz 12603 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
58 | | 1zzd 12334 |
. . . . . 6
⊢ (⊤
→ 1 ∈ ℤ) |
59 | 57, 58 | climprod1 15656 |
. . . . 5
⊢ (⊤
→ seq1( · , (ℕ × {1})) ⇝ 1) |
60 | 59 | mptru 1548 |
. . . 4
⊢ seq1(
· , (ℕ × {1})) ⇝ 1 |
61 | 56, 60 | eqbrtri 5099 |
. . 3
⊢ seq1(
· , (𝑛 ∈
ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝ 1 |
62 | | 1zzd 12334 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → 1 ∈ ℤ) |
63 | | simpr 484 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) |
64 | | seqex 13704 |
. . . . . . 7
⊢ seq1(
· , (𝑛 ∈
ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V |
65 | 64 | a1i 11 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V) |
66 | | faclimlem2 33689 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1)) |
67 | 66 | adantr 480 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1)) |
68 | | elnnuz 12604 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℕ ↔ 𝑎 ∈
(ℤ≥‘1)) |
69 | 68 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
(ℤ≥‘1)) |
70 | 69 | adantl 481 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑎 ∈ ℕ)
→ 𝑎 ∈
(ℤ≥‘1)) |
71 | | 1rp 12716 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ+ |
72 | 71 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ 1 ∈ ℝ+) |
73 | | nnrp 12723 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
74 | 73 | rpreccld 12764 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
75 | 74 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (1 / 𝑛) ∈
ℝ+) |
76 | 72, 75 | rpaddcld 12769 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (1 + (1 / 𝑛)) ∈
ℝ+) |
77 | | nn0z 12326 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℤ) |
78 | 77 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ 𝑚 ∈
ℤ) |
79 | 76, 78 | rpexpcld 13943 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((1 + (1 / 𝑛))↑𝑚) ∈
ℝ+) |
80 | | 1cnd 10954 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ 1 ∈ ℂ) |
81 | | nn0nndivcl 12287 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑚 / 𝑛) ∈
ℝ) |
82 | 81 | recnd 10987 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑚 / 𝑛) ∈
ℂ) |
83 | 80, 82 | addcomd 11160 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (1 + (𝑚 / 𝑛)) = ((𝑚 / 𝑛) + 1)) |
84 | | nn0ge0div 12372 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ 0 ≤ (𝑚 / 𝑛)) |
85 | 81, 84 | ge0p1rpd 12784 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((𝑚 / 𝑛) + 1) ∈
ℝ+) |
86 | 83, 85 | eqeltrd 2840 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (1 + (𝑚 / 𝑛)) ∈
ℝ+) |
87 | 79, 86 | rpdivcld 12771 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈
ℝ+) |
88 | 87 | rpcnd 12756 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈ ℂ) |
89 | 88 | fmpttd 6983 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ) |
90 | | elfznn 13267 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (1...𝑎) → 𝑏 ∈ ℕ) |
91 | | ffvelrn 6953 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ) |
92 | 89, 90, 91 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ) |
93 | 92 | adantlr 711 |
. . . . . . . 8
⊢ (((𝑚 ∈ ℕ0
∧ 𝑎 ∈ ℕ)
∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ) |
94 | | mulcl 10939 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑏 · 𝑥) ∈ ℂ) |
95 | 94 | adantl 481 |
. . . . . . . 8
⊢ (((𝑚 ∈ ℕ0
∧ 𝑎 ∈ ℕ)
∧ (𝑏 ∈ ℂ
∧ 𝑥 ∈ ℂ))
→ (𝑏 · 𝑥) ∈
ℂ) |
96 | 70, 93, 95 | seqcl 13724 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑎 ∈ ℕ)
→ (seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ) |
97 | 96 | adantlr 711 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · ,
(𝑛 ∈ ℕ ↦
(((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ) |
98 | 86, 76 | rpmulcld 12770 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) ∈
ℝ+) |
99 | | nn0p1nn 12255 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
100 | 99 | nnrpd 12752 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℝ+) |
101 | | rpdivcl 12737 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 + 1) ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → ((𝑚 + 1) / 𝑛) ∈
ℝ+) |
102 | 100, 73, 101 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((𝑚 + 1) / 𝑛) ∈
ℝ+) |
103 | 72, 102 | rpaddcld 12769 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (1 + ((𝑚 + 1) /
𝑛)) ∈
ℝ+) |
104 | 98, 103 | rpdivcld 12771 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈
ℝ+) |
105 | 104 | rpcnd 12756 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈ ℂ) |
106 | 105 | fmpttd 6983 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ) |
107 | | ffvelrn 6953 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ ↦ (((1 +
(𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 +
(𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ) |
108 | 106, 90, 107 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ) |
109 | 108 | adantlr 711 |
. . . . . . . 8
⊢ (((𝑚 ∈ ℕ0
∧ 𝑎 ∈ ℕ)
∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ) |
110 | 70, 109, 95 | seqcl 13724 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑎 ∈ ℕ)
→ (seq1( · , (𝑛
∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ) |
111 | 110 | adantlr 711 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · ,
(𝑛 ∈ ℕ ↦
(((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ) |
112 | | faclimlem3 33690 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑏 ∈ ℕ)
→ (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))) |
113 | | oveq2 7276 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑏 → (1 / 𝑛) = (1 / 𝑏)) |
114 | 113 | oveq2d 7284 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑏 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑏))) |
115 | 114 | oveq1d 7283 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑(𝑚 + 1)) = ((1 + (1 / 𝑏))↑(𝑚 + 1))) |
116 | | oveq2 7276 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑏 → ((𝑚 + 1) / 𝑛) = ((𝑚 + 1) / 𝑏)) |
117 | 116 | oveq2d 7284 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑏 → (1 + ((𝑚 + 1) / 𝑛)) = (1 + ((𝑚 + 1) / 𝑏))) |
118 | 115, 117 | oveq12d 7286 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏)))) |
119 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))) |
120 | | ovex 7301 |
. . . . . . . . . . . . 13
⊢ (((1 + (1
/ 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V |
121 | 118, 119,
120 | fvmpt 6869 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏)))) |
122 | 121 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑏 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏)))) |
123 | 114 | oveq1d 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑𝑚) = ((1 + (1 / 𝑏))↑𝑚)) |
124 | | oveq2 7276 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑏 → (𝑚 / 𝑛) = (𝑚 / 𝑏)) |
125 | 124 | oveq2d 7284 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑏 → (1 + (𝑚 / 𝑛)) = (1 + (𝑚 / 𝑏))) |
126 | 123, 125 | oveq12d 7286 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏)))) |
127 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))) |
128 | | ovex 7301 |
. . . . . . . . . . . . . 14
⊢ (((1 + (1
/ 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) ∈ V |
129 | 126, 127,
128 | fvmpt 6869 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏)))) |
130 | 125, 114 | oveq12d 7286 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑏 → ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) = ((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏)))) |
131 | 130, 117 | oveq12d 7286 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑏 → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))) |
132 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ ↦ (((1 +
(𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))) |
133 | | ovex 7301 |
. . . . . . . . . . . . . 14
⊢ (((1 +
(𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V |
134 | 131, 132,
133 | fvmpt 6869 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 +
(𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))) |
135 | 129, 134 | oveq12d 7286 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))) |
136 | 135 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑏 ∈ ℕ)
→ (((𝑛 ∈ ℕ
↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))) |
137 | 112, 122,
136 | 3eqtr4d 2789 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑏 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏))) |
138 | 90, 137 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏))) |
139 | 138 | adantlr 711 |
. . . . . . . 8
⊢ (((𝑚 ∈ ℕ0
∧ 𝑎 ∈ ℕ)
∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏))) |
140 | 70, 93, 109, 139 | prodfmul 15583 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑎 ∈ ℕ)
→ (seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎))) |
141 | 140 | adantlr 711 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · ,
(𝑛 ∈ ℕ ↦
(((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎))) |
142 | 57, 62, 63, 65, 67, 97, 111, 141 | climmul 15323 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ ((!‘𝑚) · (𝑚 + 1))) |
143 | | facp1 13973 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ (!‘(𝑚 + 1)) =
((!‘𝑚) ·
(𝑚 + 1))) |
144 | 143 | adantr 480 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → (!‘(𝑚 + 1)) = ((!‘𝑚) · (𝑚 + 1))) |
145 | 142, 144 | breqtrrd 5106 |
. . . 4
⊢ ((𝑚 ∈ ℕ0
∧ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 +
(1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1))) |
146 | 145 | ex 412 |
. . 3
⊢ (𝑚 ∈ ℕ0
→ (seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1)))) |
147 | 13, 21, 29, 37, 61, 146 | nn0ind 12398 |
. 2
⊢ (𝐴 ∈ ℕ0
→ seq1( · , (𝑛
∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴)) |
148 | 3, 147 | eqbrtrid 5113 |
1
⊢ (𝐴 ∈ ℕ0
→ seq1( · , 𝐹)
⇝ (!‘𝐴)) |