Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim Structured version   Visualization version   GIF version

Theorem faclim 32531
Description: An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017.)
Hypothesis
Ref Expression
faclim.1 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
Assertion
Ref Expression
faclim (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem faclim
Dummy variables 𝑎 𝑏 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim.1 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
2 seqeq3 13188 . . 3 (𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) → seq1( · , 𝐹) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))))
31, 2ax-mp 5 . 2 seq1( · , 𝐹) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))
4 oveq2 6983 . . . . . . 7 (𝑎 = 0 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑0))
5 oveq1 6982 . . . . . . . 8 (𝑎 = 0 → (𝑎 / 𝑛) = (0 / 𝑛))
65oveq2d 6991 . . . . . . 7 (𝑎 = 0 → (1 + (𝑎 / 𝑛)) = (1 + (0 / 𝑛)))
74, 6oveq12d 6993 . . . . . 6 (𝑎 = 0 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))
87mpteq2dv 5020 . . . . 5 (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))))
98seqeq3d 13191 . . . 4 (𝑎 = 0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))))
10 fveq2 6497 . . . . 5 (𝑎 = 0 → (!‘𝑎) = (!‘0))
11 fac0 13450 . . . . 5 (!‘0) = 1
1210, 11syl6eq 2825 . . . 4 (𝑎 = 0 → (!‘𝑎) = 1)
139, 12breq12d 4939 . . 3 (𝑎 = 0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝ 1))
14 oveq2 6983 . . . . . . 7 (𝑎 = 𝑚 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝑚))
15 oveq1 6982 . . . . . . . 8 (𝑎 = 𝑚 → (𝑎 / 𝑛) = (𝑚 / 𝑛))
1615oveq2d 6991 . . . . . . 7 (𝑎 = 𝑚 → (1 + (𝑎 / 𝑛)) = (1 + (𝑚 / 𝑛)))
1714, 16oveq12d 6993 . . . . . 6 (𝑎 = 𝑚 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))
1817mpteq2dv 5020 . . . . 5 (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))
1918seqeq3d 13191 . . . 4 (𝑎 = 𝑚 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))))
20 fveq2 6497 . . . 4 (𝑎 = 𝑚 → (!‘𝑎) = (!‘𝑚))
2119, 20breq12d 4939 . . 3 (𝑎 = 𝑚 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)))
22 oveq2 6983 . . . . . . 7 (𝑎 = (𝑚 + 1) → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑(𝑚 + 1)))
23 oveq1 6982 . . . . . . . 8 (𝑎 = (𝑚 + 1) → (𝑎 / 𝑛) = ((𝑚 + 1) / 𝑛))
2423oveq2d 6991 . . . . . . 7 (𝑎 = (𝑚 + 1) → (1 + (𝑎 / 𝑛)) = (1 + ((𝑚 + 1) / 𝑛)))
2522, 24oveq12d 6993 . . . . . 6 (𝑎 = (𝑚 + 1) → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))
2625mpteq2dv 5020 . . . . 5 (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))
2726seqeq3d 13191 . . . 4 (𝑎 = (𝑚 + 1) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))))
28 fveq2 6497 . . . 4 (𝑎 = (𝑚 + 1) → (!‘𝑎) = (!‘(𝑚 + 1)))
2927, 28breq12d 4939 . . 3 (𝑎 = (𝑚 + 1) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1))))
30 oveq2 6983 . . . . . . 7 (𝑎 = 𝐴 → ((1 + (1 / 𝑛))↑𝑎) = ((1 + (1 / 𝑛))↑𝐴))
31 oveq1 6982 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 / 𝑛) = (𝐴 / 𝑛))
3231oveq2d 6991 . . . . . . 7 (𝑎 = 𝐴 → (1 + (𝑎 / 𝑛)) = (1 + (𝐴 / 𝑛)))
3330, 32oveq12d 6993 . . . . . 6 (𝑎 = 𝐴 → (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))) = (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))
3433mpteq2dv 5020 . . . . 5 (𝑎 = 𝐴 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))))
3534seqeq3d 13191 . . . 4 (𝑎 = 𝐴 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) = seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))))
36 fveq2 6497 . . . 4 (𝑎 = 𝐴 → (!‘𝑎) = (!‘𝐴))
3735, 36breq12d 4939 . . 3 (𝑎 = 𝐴 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑎) / (1 + (𝑎 / 𝑛))))) ⇝ (!‘𝑎) ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴)))
38 1red 10439 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
39 nnrecre 11481 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
4038, 39readdcld 10468 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 + (1 / 𝑛)) ∈ ℝ)
4140recnd 10467 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 + (1 / 𝑛)) ∈ ℂ)
4241exp0d 13318 . . . . . . . . 9 (𝑛 ∈ ℕ → ((1 + (1 / 𝑛))↑0) = 1)
43 nncn 11447 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
44 nnne0 11473 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4543, 44div0d 11215 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (0 / 𝑛) = 0)
4645oveq2d 6991 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 + (0 / 𝑛)) = (1 + 0))
47 1p0e1 11570 . . . . . . . . . 10 (1 + 0) = 1
4846, 47syl6eq 2825 . . . . . . . . 9 (𝑛 ∈ ℕ → (1 + (0 / 𝑛)) = 1)
4942, 48oveq12d 6993 . . . . . . . 8 (𝑛 ∈ ℕ → (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))) = (1 / 1))
50 1div1e1 11130 . . . . . . . 8 (1 / 1) = 1
5149, 50syl6eq 2825 . . . . . . 7 (𝑛 ∈ ℕ → (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))) = 1)
5251mpteq2ia 5015 . . . . . 6 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (𝑛 ∈ ℕ ↦ 1)
53 fconstmpt 5461 . . . . . 6 (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1)
5452, 53eqtr4i 2800 . . . . 5 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (ℕ × {1})
55 seqeq3 13188 . . . . 5 ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛)))) = (ℕ × {1}) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · , (ℕ × {1})))
5654, 55ax-mp 5 . . . 4 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) = seq1( · , (ℕ × {1}))
57 nnuz 12094 . . . . . 6 ℕ = (ℤ‘1)
58 1zzd 11825 . . . . . 6 (⊤ → 1 ∈ ℤ)
5957, 58climprod1 15178 . . . . 5 (⊤ → seq1( · , (ℕ × {1})) ⇝ 1)
6059mptru 1515 . . . 4 seq1( · , (ℕ × {1})) ⇝ 1
6156, 60eqbrtri 4947 . . 3 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑0) / (1 + (0 / 𝑛))))) ⇝ 1
62 1zzd 11825 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → 1 ∈ ℤ)
63 simpr 477 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚))
64 seqex 13185 . . . . . . 7 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V
6564a1i 11 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ∈ V)
66 faclimlem2 32529 . . . . . . 7 (𝑚 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1))
6766adantr 473 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (𝑚 + 1))
68 elnnuz 12095 . . . . . . . . . 10 (𝑎 ∈ ℕ ↔ 𝑎 ∈ (ℤ‘1))
6968biimpi 208 . . . . . . . . 9 (𝑎 ∈ ℕ → 𝑎 ∈ (ℤ‘1))
7069adantl 474 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → 𝑎 ∈ (ℤ‘1))
71 1rp 12207 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 1 ∈ ℝ+)
73 nnrp 12216 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7473rpreccld 12257 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7574adantl 474 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
7672, 75rpaddcld 12262 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (1 / 𝑛)) ∈ ℝ+)
77 nn0z 11817 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
7877adantr 473 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
7976, 78rpexpcld 13422 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((1 + (1 / 𝑛))↑𝑚) ∈ ℝ+)
80 1cnd 10433 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 1 ∈ ℂ)
81 nn0nndivcl 11777 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℝ)
8281recnd 10467 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℂ)
8380, 82addcomd 10641 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (𝑚 / 𝑛)) = ((𝑚 / 𝑛) + 1))
84 nn0ge0div 11863 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 0 ≤ (𝑚 / 𝑛))
8581, 84ge0p1rpd 12277 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑚 / 𝑛) + 1) ∈ ℝ+)
8683, 85eqeltrd 2861 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + (𝑚 / 𝑛)) ∈ ℝ+)
8779, 86rpdivcld 12264 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈ ℝ+)
8887rpcnd 12249 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) ∈ ℂ)
8988fmpttd 6701 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ)
90 elfznn 12751 . . . . . . . . . 10 (𝑏 ∈ (1...𝑎) → 𝑏 ∈ ℕ)
91 ffvelrn 6673 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
9289, 90, 91syl2an 587 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
9392adantlr 703 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) ∈ ℂ)
94 mulcl 10418 . . . . . . . . 9 ((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑏 · 𝑥) ∈ ℂ)
9594adantl 474 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ (𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑏 · 𝑥) ∈ ℂ)
9670, 93, 95seqcl 13204 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ)
9796adantlr 703 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) ∈ ℂ)
9886, 76rpmulcld 12263 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) ∈ ℝ+)
99 nn0p1nn 11747 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
10099nnrpd 12245 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℝ+)
101 rpdivcl 12230 . . . . . . . . . . . . . . 15 (((𝑚 + 1) ∈ ℝ+𝑛 ∈ ℝ+) → ((𝑚 + 1) / 𝑛) ∈ ℝ+)
102100, 73, 101syl2an 587 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑚 + 1) / 𝑛) ∈ ℝ+)
10372, 102rpaddcld 12262 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (1 + ((𝑚 + 1) / 𝑛)) ∈ ℝ+)
10498, 103rpdivcld 12264 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈ ℝ+)
105104rpcnd 12249 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) ∈ ℂ)
106105fmpttd 6701 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ)
107 ffvelrn 6673 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))):ℕ⟶ℂ ∧ 𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
108106, 90, 107syl2an 587 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
109108adantlr 703 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) ∈ ℂ)
11070, 109, 95seqcl 13204 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ)
111110adantlr 703 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) ∈ ℂ)
112 faclimlem3 32530 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
113 oveq2 6983 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑏 → (1 / 𝑛) = (1 / 𝑏))
114113oveq2d 6991 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑏)))
115114oveq1d 6990 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑(𝑚 + 1)) = ((1 + (1 / 𝑏))↑(𝑚 + 1)))
116 oveq2 6983 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((𝑚 + 1) / 𝑛) = ((𝑚 + 1) / 𝑏))
117116oveq2d 6991 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (1 + ((𝑚 + 1) / 𝑛)) = (1 + ((𝑚 + 1) / 𝑏)))
118115, 117oveq12d 6993 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
119 eqid 2773 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))
120 ovex 7007 . . . . . . . . . . . . 13 (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V
121118, 119, 120fvmpt 6594 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
122121adantl 474 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑏))))
123114oveq1d 6990 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((1 + (1 / 𝑛))↑𝑚) = ((1 + (1 / 𝑏))↑𝑚))
124 oveq2 6983 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑏 → (𝑚 / 𝑛) = (𝑚 / 𝑏))
125124oveq2d 6991 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → (1 + (𝑚 / 𝑛)) = (1 + (𝑚 / 𝑏)))
126123, 125oveq12d 6993 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))))
127 eqid 2773 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))
128 ovex 7007 . . . . . . . . . . . . . 14 (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) ∈ V
129126, 127, 128fvmpt 6594 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) = (((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))))
130125, 114oveq12d 6993 . . . . . . . . . . . . . . 15 (𝑛 = 𝑏 → ((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) = ((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))))
131130, 117oveq12d 6993 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))
132 eqid 2773 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))
133 ovex 7007 . . . . . . . . . . . . . 14 (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))) ∈ V
134131, 132, 133fvmpt 6594 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏))))
135129, 134oveq12d 6993 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
136135adantl 474 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)) = ((((1 + (1 / 𝑏))↑𝑚) / (1 + (𝑚 / 𝑏))) · (((1 + (𝑚 / 𝑏)) · (1 + (1 / 𝑏))) / (1 + ((𝑚 + 1) / 𝑏)))))
137112, 122, 1363eqtr4d 2819 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑏 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
13890, 137sylan2 584 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
139138adantlr 703 . . . . . . . 8 (((𝑚 ∈ ℕ0𝑎 ∈ ℕ) ∧ 𝑏 ∈ (1...𝑎)) → ((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏) = (((𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))‘𝑏) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛))))‘𝑏)))
14070, 93, 109, 139prodfmul 15105 . . . . . . 7 ((𝑚 ∈ ℕ0𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎)))
141140adantlr 703 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) ∧ 𝑎 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛)))))‘𝑎) · (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑚 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑚 + 1) / 𝑛)))))‘𝑎)))
14257, 62, 63, 65, 67, 97, 111, 141climmul 14849 . . . . 5 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ ((!‘𝑚) · (𝑚 + 1)))
143 facp1 13452 . . . . . 6 (𝑚 ∈ ℕ0 → (!‘(𝑚 + 1)) = ((!‘𝑚) · (𝑚 + 1)))
144143adantr 473 . . . . 5 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → (!‘(𝑚 + 1)) = ((!‘𝑚) · (𝑚 + 1)))
145142, 144breqtrrd 4954 . . . 4 ((𝑚 ∈ ℕ0 ∧ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚)) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1)))
146145ex 405 . . 3 (𝑚 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝑚) / (1 + (𝑚 / 𝑛))))) ⇝ (!‘𝑚) → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑(𝑚 + 1)) / (1 + ((𝑚 + 1) / 𝑛))))) ⇝ (!‘(𝑚 + 1))))
14713, 21, 29, 37, 61, 146nn0ind 11889 . 2 (𝐴 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))) ⇝ (!‘𝐴))
1483, 147syl5eqbr 4961 1 (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wtru 1509  wcel 2051  Vcvv 3410  {csn 4436   class class class wbr 4926  cmpt 5005   × cxp 5402  wf 6182  cfv 6186  (class class class)co 6975  cc 10332  0cc0 10334  1c1 10335   + caddc 10337   · cmul 10339   / cdiv 11097  cn 11438  0cn0 11706  cz 11792  cuz 12057  +crp 12203  ...cfz 12707  seqcseq 13183  cexp 13243  !cfa 13447  cli 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-pm 8208  df-en 8306  df-dom 8307  df-sdom 8308  df-sup 8700  df-inf 8701  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793  df-uz 12058  df-rp 12204  df-fz 12708  df-fzo 12849  df-fl 12976  df-seq 13184  df-exp 13244  df-fac 13448  df-shft 14286  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-clim 14705  df-rlim 14706
This theorem is referenced by:  iprodfac  32532
  Copyright terms: Public domain W3C validator