MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodmul Structured version   Visualization version   GIF version

Theorem iprodmul 15349
Description: Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodmul.1 𝑍 = (ℤ𝑀)
iprodmul.2 (𝜑𝑀 ∈ ℤ)
iprodmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
iprodmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iprodmul.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
iprodmul.6 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
iprodmul.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
iprodmul.8 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
iprodmul (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐵,𝑚,𝑧   𝑘,𝐹,𝑚,𝑛,𝑦,𝑧   𝑘,𝐺,𝑚,𝑛,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑀,𝑚,𝑛   𝜑,𝑚,𝑦   𝑦,𝑀   𝑧,𝑚,𝑀   𝜑,𝑛,𝑦,𝑧   𝑘,𝑍,𝑚,𝑛,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑘,𝑚)   𝐵(𝑦,𝑘,𝑛)

Proof of Theorem iprodmul
Dummy variables 𝑗 𝑎 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodmul.1 . 2 𝑍 = (ℤ𝑀)
2 iprodmul.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodmul.3 . . . 4 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
4 iprodmul.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
5 iprodmul.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
64, 5eqeltrd 2890 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 iprodmul.6 . . . 4 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
8 iprodmul.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
9 iprodmul.8 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
108, 9eqeltrd 2890 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
11 fveq2 6645 . . . . . . 7 (𝑎 = 𝑘 → (𝐹𝑎) = (𝐹𝑘))
12 fveq2 6645 . . . . . . 7 (𝑎 = 𝑘 → (𝐺𝑎) = (𝐺𝑘))
1311, 12oveq12d 7153 . . . . . 6 (𝑎 = 𝑘 → ((𝐹𝑎) · (𝐺𝑎)) = ((𝐹𝑘) · (𝐺𝑘)))
14 eqid 2798 . . . . . 6 (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
15 ovex 7168 . . . . . 6 ((𝐹𝑘) · (𝐺𝑘)) ∈ V
1613, 14, 15fvmpt 6745 . . . . 5 (𝑘𝑍 → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
1716adantl 485 . . . 4 ((𝜑𝑘𝑍) → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
181, 3, 6, 7, 10, 17ntrivcvgmul 15250 . . 3 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
19 fveq2 6645 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐹𝑚) = (𝐹𝑎))
20 fveq2 6645 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐺𝑚) = (𝐺𝑎))
2119, 20oveq12d 7153 . . . . . . . . 9 (𝑚 = 𝑎 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑎) · (𝐺𝑎)))
2221cbvmptv 5133 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
23 seqeq3 13369 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) → seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))))
2422, 23ax-mp 5 . . . . . . 7 seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))))
2524breq1i 5037 . . . . . 6 (seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤 ↔ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤)
2625anbi2i 625 . . . . 5 ((𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2726exbii 1849 . . . 4 (∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2827rexbii 3210 . . 3 (∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2918, 28sylibr 237 . 2 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤))
30 eqid 2798 . . . 4 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))
31 fveq2 6645 . . . . 5 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
32 fveq2 6645 . . . . 5 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
3331, 32oveq12d 7153 . . . 4 (𝑚 = 𝑘 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑘) · (𝐺𝑘)))
34 simpr 488 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
356, 10mulcld 10650 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) ∈ ℂ)
3630, 33, 34, 35fvmptd3 6768 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
374, 8oveq12d 7153 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = (𝐴 · 𝐵))
3836, 37eqtrd 2833 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = (𝐴 · 𝐵))
395, 9mulcld 10650 . 2 ((𝜑𝑘𝑍) → (𝐴 · 𝐵) ∈ ℂ)
401, 2, 3, 4, 5iprodclim2 15345 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ ∏𝑘𝑍 𝐴)
41 seqex 13366 . . . 4 seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V
4241a1i 11 . . 3 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V)
431, 2, 7, 8, 9iprodclim2 15345 . . 3 (𝜑 → seq𝑀( · , 𝐺) ⇝ ∏𝑘𝑍 𝐵)
441, 2, 6prodf 15235 . . . 4 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
4544ffvelrnda 6828 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
461, 2, 10prodf 15235 . . . 4 (𝜑 → seq𝑀( · , 𝐺):𝑍⟶ℂ)
4746ffvelrnda 6828 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐺)‘𝑗) ∈ ℂ)
48 simpr 488 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
4948, 1eleqtrdi 2900 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
50 elfzuz 12898 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
5150, 1eleqtrrdi 2901 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
5251, 6sylan2 595 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5352adantlr 714 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5451, 10sylan2 595 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5554adantlr 714 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5636adantlr 714 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5751, 56sylan2 595 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5849, 53, 55, 57prodfmul 15238 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))))‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑗) · (seq𝑀( · , 𝐺)‘𝑗)))
591, 2, 40, 42, 43, 45, 47, 58climmul 14981 . 2 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
601, 2, 29, 38, 39, 59iprodclim 15344 1 (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  Vcvv 3441   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526   · cmul 10531  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  cli 14833  cprod 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator