MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodmul Structured version   Visualization version   GIF version

Theorem iprodmul 15886
Description: Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodmul.1 𝑍 = (ℤ𝑀)
iprodmul.2 (𝜑𝑀 ∈ ℤ)
iprodmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
iprodmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iprodmul.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
iprodmul.6 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
iprodmul.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
iprodmul.8 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
iprodmul (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐵,𝑚,𝑧   𝑘,𝐹,𝑚,𝑛,𝑦,𝑧   𝑘,𝐺,𝑚,𝑛,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑀,𝑚,𝑛   𝜑,𝑚,𝑦   𝑦,𝑀   𝑧,𝑚,𝑀   𝜑,𝑛,𝑦,𝑧   𝑘,𝑍,𝑚,𝑛,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑘,𝑚)   𝐵(𝑦,𝑘,𝑛)

Proof of Theorem iprodmul
Dummy variables 𝑗 𝑎 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodmul.1 . 2 𝑍 = (ℤ𝑀)
2 iprodmul.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodmul.3 . . . 4 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
4 iprodmul.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
5 iprodmul.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
64, 5eqeltrd 2838 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 iprodmul.6 . . . 4 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
8 iprodmul.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
9 iprodmul.8 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
108, 9eqeltrd 2838 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
11 fveq2 6842 . . . . . . 7 (𝑎 = 𝑘 → (𝐹𝑎) = (𝐹𝑘))
12 fveq2 6842 . . . . . . 7 (𝑎 = 𝑘 → (𝐺𝑎) = (𝐺𝑘))
1311, 12oveq12d 7375 . . . . . 6 (𝑎 = 𝑘 → ((𝐹𝑎) · (𝐺𝑎)) = ((𝐹𝑘) · (𝐺𝑘)))
14 eqid 2736 . . . . . 6 (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
15 ovex 7390 . . . . . 6 ((𝐹𝑘) · (𝐺𝑘)) ∈ V
1613, 14, 15fvmpt 6948 . . . . 5 (𝑘𝑍 → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
1716adantl 482 . . . 4 ((𝜑𝑘𝑍) → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
181, 3, 6, 7, 10, 17ntrivcvgmul 15787 . . 3 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
19 fveq2 6842 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐹𝑚) = (𝐹𝑎))
20 fveq2 6842 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐺𝑚) = (𝐺𝑎))
2119, 20oveq12d 7375 . . . . . . . . 9 (𝑚 = 𝑎 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑎) · (𝐺𝑎)))
2221cbvmptv 5218 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
23 seqeq3 13911 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) → seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))))
2422, 23ax-mp 5 . . . . . . 7 seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))))
2524breq1i 5112 . . . . . 6 (seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤 ↔ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤)
2625anbi2i 623 . . . . 5 ((𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2726exbii 1850 . . . 4 (∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2827rexbii 3097 . . 3 (∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2918, 28sylibr 233 . 2 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤))
30 eqid 2736 . . . 4 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))
31 fveq2 6842 . . . . 5 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
32 fveq2 6842 . . . . 5 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
3331, 32oveq12d 7375 . . . 4 (𝑚 = 𝑘 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑘) · (𝐺𝑘)))
34 simpr 485 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
356, 10mulcld 11175 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) ∈ ℂ)
3630, 33, 34, 35fvmptd3 6971 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
374, 8oveq12d 7375 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = (𝐴 · 𝐵))
3836, 37eqtrd 2776 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = (𝐴 · 𝐵))
395, 9mulcld 11175 . 2 ((𝜑𝑘𝑍) → (𝐴 · 𝐵) ∈ ℂ)
401, 2, 3, 4, 5iprodclim2 15882 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ ∏𝑘𝑍 𝐴)
41 seqex 13908 . . . 4 seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V
4241a1i 11 . . 3 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V)
431, 2, 7, 8, 9iprodclim2 15882 . . 3 (𝜑 → seq𝑀( · , 𝐺) ⇝ ∏𝑘𝑍 𝐵)
441, 2, 6prodf 15772 . . . 4 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
4544ffvelcdmda 7035 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
461, 2, 10prodf 15772 . . . 4 (𝜑 → seq𝑀( · , 𝐺):𝑍⟶ℂ)
4746ffvelcdmda 7035 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐺)‘𝑗) ∈ ℂ)
48 simpr 485 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
4948, 1eleqtrdi 2848 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
50 elfzuz 13437 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
5150, 1eleqtrrdi 2849 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
5251, 6sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5352adantlr 713 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5451, 10sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5554adantlr 713 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5636adantlr 713 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5751, 56sylan2 593 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5849, 53, 55, 57prodfmul 15775 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))))‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑗) · (seq𝑀( · , 𝐺)‘𝑗)))
591, 2, 40, 42, 43, 45, 47, 58climmul 15515 . 2 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
601, 2, 29, 38, 39, 59iprodclim 15881 1 (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  Vcvv 3445   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051   · cmul 11056  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906  cli 15366  cprod 15788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-prod 15789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator