Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodmul Structured version   Visualization version   GIF version

Theorem iprodmul 15348
 Description: Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodmul.1 𝑍 = (ℤ𝑀)
iprodmul.2 (𝜑𝑀 ∈ ℤ)
iprodmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
iprodmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iprodmul.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
iprodmul.6 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
iprodmul.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
iprodmul.8 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
iprodmul (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐵,𝑚,𝑧   𝑘,𝐹,𝑚,𝑛,𝑦,𝑧   𝑘,𝐺,𝑚,𝑛,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑀,𝑚,𝑛   𝜑,𝑚,𝑦   𝑦,𝑀   𝑧,𝑚,𝑀   𝜑,𝑛,𝑦,𝑧   𝑘,𝑍,𝑚,𝑛,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑘,𝑚)   𝐵(𝑦,𝑘,𝑛)

Proof of Theorem iprodmul
Dummy variables 𝑗 𝑎 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodmul.1 . 2 𝑍 = (ℤ𝑀)
2 iprodmul.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodmul.3 . . . 4 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
4 iprodmul.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
5 iprodmul.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
64, 5eqeltrd 2914 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 iprodmul.6 . . . 4 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
8 iprodmul.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
9 iprodmul.8 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
108, 9eqeltrd 2914 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
11 fveq2 6652 . . . . . . 7 (𝑎 = 𝑘 → (𝐹𝑎) = (𝐹𝑘))
12 fveq2 6652 . . . . . . 7 (𝑎 = 𝑘 → (𝐺𝑎) = (𝐺𝑘))
1311, 12oveq12d 7158 . . . . . 6 (𝑎 = 𝑘 → ((𝐹𝑎) · (𝐺𝑎)) = ((𝐹𝑘) · (𝐺𝑘)))
14 eqid 2822 . . . . . 6 (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
15 ovex 7173 . . . . . 6 ((𝐹𝑘) · (𝐺𝑘)) ∈ V
1613, 14, 15fvmpt 6750 . . . . 5 (𝑘𝑍 → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
1716adantl 485 . . . 4 ((𝜑𝑘𝑍) → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
181, 3, 6, 7, 10, 17ntrivcvgmul 15249 . . 3 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
19 fveq2 6652 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐹𝑚) = (𝐹𝑎))
20 fveq2 6652 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐺𝑚) = (𝐺𝑎))
2119, 20oveq12d 7158 . . . . . . . . 9 (𝑚 = 𝑎 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑎) · (𝐺𝑎)))
2221cbvmptv 5145 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
23 seqeq3 13369 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) → seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))))
2422, 23ax-mp 5 . . . . . . 7 seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))))
2524breq1i 5049 . . . . . 6 (seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤 ↔ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤)
2625anbi2i 625 . . . . 5 ((𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2726exbii 1849 . . . 4 (∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2827rexbii 3235 . . 3 (∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2918, 28sylibr 237 . 2 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤))
30 eqid 2822 . . . 4 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))
31 fveq2 6652 . . . . 5 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
32 fveq2 6652 . . . . 5 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
3331, 32oveq12d 7158 . . . 4 (𝑚 = 𝑘 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑘) · (𝐺𝑘)))
34 simpr 488 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
356, 10mulcld 10650 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) ∈ ℂ)
3630, 33, 34, 35fvmptd3 6773 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
374, 8oveq12d 7158 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = (𝐴 · 𝐵))
3836, 37eqtrd 2857 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = (𝐴 · 𝐵))
395, 9mulcld 10650 . 2 ((𝜑𝑘𝑍) → (𝐴 · 𝐵) ∈ ℂ)
401, 2, 3, 4, 5iprodclim2 15344 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ ∏𝑘𝑍 𝐴)
41 seqex 13366 . . . 4 seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V
4241a1i 11 . . 3 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V)
431, 2, 7, 8, 9iprodclim2 15344 . . 3 (𝜑 → seq𝑀( · , 𝐺) ⇝ ∏𝑘𝑍 𝐵)
441, 2, 6prodf 15234 . . . 4 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
4544ffvelrnda 6833 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
461, 2, 10prodf 15234 . . . 4 (𝜑 → seq𝑀( · , 𝐺):𝑍⟶ℂ)
4746ffvelrnda 6833 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐺)‘𝑗) ∈ ℂ)
48 simpr 488 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
4948, 1eleqtrdi 2924 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
50 elfzuz 12898 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
5150, 1eleqtrrdi 2925 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
5251, 6sylan2 595 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5352adantlr 714 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5451, 10sylan2 595 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5554adantlr 714 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5636adantlr 714 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5751, 56sylan2 595 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5849, 53, 55, 57prodfmul 15237 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))))‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑗) · (seq𝑀( · , 𝐺)‘𝑗)))
591, 2, 40, 42, 43, 45, 47, 58climmul 14980 . 2 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
601, 2, 29, 38, 39, 59iprodclim 15343 1 (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2114   ≠ wne 3011  ∃wrex 3131  Vcvv 3469   class class class wbr 5042   ↦ cmpt 5122  ‘cfv 6334  (class class class)co 7140  ℂcc 10524  0cc0 10526   · cmul 10531  ℤcz 11969  ℤ≥cuz 12231  ...cfz 12885  seqcseq 13364   ⇝ cli 14832  ∏cprod 15250 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-prod 15251 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator