MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodmul Structured version   Visualization version   GIF version

Theorem iprodmul 15914
Description: Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodmul.1 𝑍 = (ℤ𝑀)
iprodmul.2 (𝜑𝑀 ∈ ℤ)
iprodmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
iprodmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iprodmul.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
iprodmul.6 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
iprodmul.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
iprodmul.8 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
iprodmul (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝑀,𝑚,𝑛,𝑦,𝑧   𝐴,𝑛,𝑦   𝑘,𝐺,𝑚,𝑛,𝑦,𝑧   𝑘,𝐹,𝑚,𝑛,𝑦,𝑧   𝜑,𝑘   𝑧,𝐵   𝜑,𝑚,𝑛,𝑦,𝑧   𝐵,𝑚   𝑘,𝑍,𝑚,𝑛,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑘,𝑚)   𝐵(𝑦,𝑘,𝑛)

Proof of Theorem iprodmul
Dummy variables 𝑗 𝑤 𝑝 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodmul.1 . 2 𝑍 = (ℤ𝑀)
2 iprodmul.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodmul.3 . . . 4 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
4 iprodmul.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
5 iprodmul.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
64, 5eqeltrd 2833 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 iprodmul.6 . . . 4 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
8 iprodmul.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
9 iprodmul.8 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
108, 9eqeltrd 2833 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
11 fveq2 6830 . . . . . . 7 (𝑎 = 𝑘 → (𝐹𝑎) = (𝐹𝑘))
12 fveq2 6830 . . . . . . 7 (𝑎 = 𝑘 → (𝐺𝑎) = (𝐺𝑘))
1311, 12oveq12d 7372 . . . . . 6 (𝑎 = 𝑘 → ((𝐹𝑎) · (𝐺𝑎)) = ((𝐹𝑘) · (𝐺𝑘)))
14 eqid 2733 . . . . . 6 (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
15 ovex 7387 . . . . . 6 ((𝐹𝑘) · (𝐺𝑘)) ∈ V
1613, 14, 15fvmpt 6937 . . . . 5 (𝑘𝑍 → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
1716adantl 481 . . . 4 ((𝜑𝑘𝑍) → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
181, 3, 6, 7, 10, 17ntrivcvgmul 15813 . . 3 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
19 fveq2 6830 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐹𝑚) = (𝐹𝑎))
20 fveq2 6830 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐺𝑚) = (𝐺𝑎))
2119, 20oveq12d 7372 . . . . . . . . 9 (𝑚 = 𝑎 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑎) · (𝐺𝑎)))
2221cbvmptv 5199 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
23 seqeq3 13917 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) → seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))))
2422, 23ax-mp 5 . . . . . . 7 seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))))
2524breq1i 5102 . . . . . 6 (seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤 ↔ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤)
2625anbi2i 623 . . . . 5 ((𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2726exbii 1849 . . . 4 (∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2827rexbii 3080 . . 3 (∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2918, 28sylibr 234 . 2 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤))
30 eqid 2733 . . . 4 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))
31 fveq2 6830 . . . . 5 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
32 fveq2 6830 . . . . 5 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
3331, 32oveq12d 7372 . . . 4 (𝑚 = 𝑘 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑘) · (𝐺𝑘)))
34 simpr 484 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
356, 10mulcld 11141 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) ∈ ℂ)
3630, 33, 34, 35fvmptd3 6960 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
374, 8oveq12d 7372 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = (𝐴 · 𝐵))
3836, 37eqtrd 2768 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = (𝐴 · 𝐵))
395, 9mulcld 11141 . 2 ((𝜑𝑘𝑍) → (𝐴 · 𝐵) ∈ ℂ)
401, 2, 3, 4, 5iprodclim2 15910 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ ∏𝑘𝑍 𝐴)
41 seqex 13914 . . . 4 seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V
4241a1i 11 . . 3 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V)
431, 2, 7, 8, 9iprodclim2 15910 . . 3 (𝜑 → seq𝑀( · , 𝐺) ⇝ ∏𝑘𝑍 𝐵)
441, 2, 6prodf 15798 . . . 4 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
4544ffvelcdmda 7025 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
461, 2, 10prodf 15798 . . . 4 (𝜑 → seq𝑀( · , 𝐺):𝑍⟶ℂ)
4746ffvelcdmda 7025 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐺)‘𝑗) ∈ ℂ)
48 simpr 484 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
4948, 1eleqtrdi 2843 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
50 elfzuz 13424 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
5150, 1eleqtrrdi 2844 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
5251, 6sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5352adantlr 715 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5451, 10sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5554adantlr 715 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5636adantlr 715 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5751, 56sylan2 593 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5849, 53, 55, 57prodfmul 15801 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))))‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑗) · (seq𝑀( · , 𝐺)‘𝑗)))
591, 2, 40, 42, 43, 45, 47, 58climmul 15544 . 2 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
601, 2, 29, 38, 39, 59iprodclim 15909 1 (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  Vcvv 3437   class class class wbr 5095  cmpt 5176  cfv 6488  (class class class)co 7354  cc 11013  0cc0 11015   · cmul 11020  cz 12477  cuz 12740  ...cfz 13411  seqcseq 13912  cli 15395  cprod 15814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-prod 15815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator