MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodmul Structured version   Visualization version   GIF version

Theorem iprodmul 15976
Description: Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodmul.1 𝑍 = (ℤ𝑀)
iprodmul.2 (𝜑𝑀 ∈ ℤ)
iprodmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
iprodmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iprodmul.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
iprodmul.6 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
iprodmul.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
iprodmul.8 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
iprodmul (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝑀,𝑚,𝑛,𝑦,𝑧   𝐴,𝑛,𝑦   𝑘,𝐺,𝑚,𝑛,𝑦,𝑧   𝑘,𝐹,𝑚,𝑛,𝑦,𝑧   𝜑,𝑘   𝑧,𝐵   𝜑,𝑚,𝑛,𝑦,𝑧   𝐵,𝑚   𝑘,𝑍,𝑚,𝑛,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑘,𝑚)   𝐵(𝑦,𝑘,𝑛)

Proof of Theorem iprodmul
Dummy variables 𝑗 𝑤 𝑝 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodmul.1 . 2 𝑍 = (ℤ𝑀)
2 iprodmul.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodmul.3 . . . 4 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
4 iprodmul.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
5 iprodmul.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
64, 5eqeltrd 2829 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 iprodmul.6 . . . 4 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
8 iprodmul.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
9 iprodmul.8 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
108, 9eqeltrd 2829 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
11 fveq2 6861 . . . . . . 7 (𝑎 = 𝑘 → (𝐹𝑎) = (𝐹𝑘))
12 fveq2 6861 . . . . . . 7 (𝑎 = 𝑘 → (𝐺𝑎) = (𝐺𝑘))
1311, 12oveq12d 7408 . . . . . 6 (𝑎 = 𝑘 → ((𝐹𝑎) · (𝐺𝑎)) = ((𝐹𝑘) · (𝐺𝑘)))
14 eqid 2730 . . . . . 6 (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
15 ovex 7423 . . . . . 6 ((𝐹𝑘) · (𝐺𝑘)) ∈ V
1613, 14, 15fvmpt 6971 . . . . 5 (𝑘𝑍 → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
1716adantl 481 . . . 4 ((𝜑𝑘𝑍) → ((𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
181, 3, 6, 7, 10, 17ntrivcvgmul 15875 . . 3 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
19 fveq2 6861 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐹𝑚) = (𝐹𝑎))
20 fveq2 6861 . . . . . . . . . 10 (𝑚 = 𝑎 → (𝐺𝑚) = (𝐺𝑎))
2119, 20oveq12d 7408 . . . . . . . . 9 (𝑚 = 𝑎 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑎) · (𝐺𝑎)))
2221cbvmptv 5214 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))
23 seqeq3 13978 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))) → seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))))
2422, 23ax-mp 5 . . . . . . 7 seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) = seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎))))
2524breq1i 5117 . . . . . 6 (seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤 ↔ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤)
2625anbi2i 623 . . . . 5 ((𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2726exbii 1848 . . . 4 (∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2827rexbii 3077 . . 3 (∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤) ↔ ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑎𝑍 ↦ ((𝐹𝑎) · (𝐺𝑎)))) ⇝ 𝑤))
2918, 28sylibr 234 . 2 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ 𝑤))
30 eqid 2730 . . . 4 (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))
31 fveq2 6861 . . . . 5 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
32 fveq2 6861 . . . . 5 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
3331, 32oveq12d 7408 . . . 4 (𝑚 = 𝑘 → ((𝐹𝑚) · (𝐺𝑚)) = ((𝐹𝑘) · (𝐺𝑘)))
34 simpr 484 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
356, 10mulcld 11201 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) ∈ ℂ)
3630, 33, 34, 35fvmptd3 6994 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
374, 8oveq12d 7408 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = (𝐴 · 𝐵))
3836, 37eqtrd 2765 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = (𝐴 · 𝐵))
395, 9mulcld 11201 . 2 ((𝜑𝑘𝑍) → (𝐴 · 𝐵) ∈ ℂ)
401, 2, 3, 4, 5iprodclim2 15972 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ ∏𝑘𝑍 𝐴)
41 seqex 13975 . . . 4 seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V
4241a1i 11 . . 3 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ∈ V)
431, 2, 7, 8, 9iprodclim2 15972 . . 3 (𝜑 → seq𝑀( · , 𝐺) ⇝ ∏𝑘𝑍 𝐵)
441, 2, 6prodf 15860 . . . 4 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
4544ffvelcdmda 7059 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
461, 2, 10prodf 15860 . . . 4 (𝜑 → seq𝑀( · , 𝐺):𝑍⟶ℂ)
4746ffvelcdmda 7059 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐺)‘𝑗) ∈ ℂ)
48 simpr 484 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
4948, 1eleqtrdi 2839 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
50 elfzuz 13488 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
5150, 1eleqtrrdi 2840 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
5251, 6sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5352adantlr 715 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5451, 10sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5554adantlr 715 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
5636adantlr 715 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5751, 56sylan2 593 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5849, 53, 55, 57prodfmul 15863 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚))))‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑗) · (seq𝑀( · , 𝐺)‘𝑗)))
591, 2, 40, 42, 43, 45, 47, 58climmul 15606 . 2 (𝜑 → seq𝑀( · , (𝑚𝑍 ↦ ((𝐹𝑚) · (𝐺𝑚)))) ⇝ (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
601, 2, 29, 38, 39, 59iprodclim 15971 1 (𝜑 → ∏𝑘𝑍 (𝐴 · 𝐵) = (∏𝑘𝑍 𝐴 · ∏𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  Vcvv 3450   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075   · cmul 11080  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  cli 15457  cprod 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator