Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxp | Structured version Visualization version GIF version |
Description: Generalize the binomial theorem binom 15470 to positive real summand 𝐴, real summand 𝐵, and complex exponent 𝐶. Proof in https://en.wikibooks.org/wiki/Advanced_Calculus 15470; see also https://en.wikipedia.org/wiki/Binomial_series 15470, https://en.wikipedia.org/wiki/Binomial_theorem 15470 (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem 15470. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
binomcxp | ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | binomcxp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | binomcxp.lt | . . 3 ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) | |
4 | binomcxp.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 1, 2, 3, 4 | binomcxplemnn0 41856 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
6 | eqid 2738 | . . 3 ⊢ (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
7 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) | |
8 | oveq2 7263 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑏↑𝑥) = (𝑏↑𝑘)) | |
9 | 7, 8 | oveq12d 7273 | . . . . 5 ⊢ (𝑥 = 𝑘 → (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)) = (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘))) |
10 | 9 | cbvmptv 5183 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))) = (𝑘 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘))) |
11 | 10 | mpteq2i 5175 | . . 3 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘)))) |
12 | eqid 2738 | . . 3 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
13 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → 𝑥 = 𝑘) | |
14 | oveq2 7263 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑗 → (𝐶C𝑐𝑦) = (𝐶C𝑐𝑗)) | |
15 | 14 | cbvmptv 5183 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
17 | 16, 13 | fveq12d 6763 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) |
18 | 13, 17 | oveq12d 7273 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) = (𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘))) |
19 | oveq1 7262 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝑥 − 1) = (𝑘 − 1)) | |
20 | 19 | oveq2d 7271 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑏↑(𝑥 − 1)) = (𝑏↑(𝑘 − 1))) |
21 | 18, 20 | oveq12d 7273 | . . . . 5 ⊢ (𝑥 = 𝑘 → ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1))) = ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
22 | 21 | cbvmptv 5183 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
23 | 22 | mpteq2i 5175 | . . 3 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ ↦ ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1))))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
24 | oveq2 7263 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 = 𝑗 → (𝐶C𝑐𝑥) = (𝐶C𝑐𝑗)) | |
25 | 24 | cbvmptv 5183 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
26 | 25 | fveq1i 6757 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) |
27 | 26 | oveq1i 7265 | . . . . . . . . . . . 12 ⊢ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥)) = (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)) |
28 | 27 | mpteq2i 5175 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))) = (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))) |
29 | 28 | mpteq2i 5175 | . . . . . . . . . 10 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥)))) = (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)))) |
30 | 29 | fveq1i 6757 | . . . . . . . . 9 ⊢ ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟) = ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟) |
31 | seqeq3 13654 | . . . . . . . . 9 ⊢ (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟) = ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟) → seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) |
33 | 32 | eleq1i 2829 | . . . . . . 7 ⊢ (seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ ) |
34 | 33 | rabbii 3397 | . . . . . 6 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ } = {𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ } |
35 | 34 | supeq1i 9136 | . . . . 5 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
36 | 35 | oveq2i 7266 | . . . 4 ⊢ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) = (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
37 | 36 | imaeq2i 5956 | . . 3 ⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) = (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) |
38 | eqid 2738 | . . 3 ⊢ (𝑏 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑏)‘𝑘)) = (𝑏 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑏)‘𝑘)) | |
39 | 1, 2, 3, 4, 6, 11, 12, 23, 37, 38 | binomcxplemnotnn0 41863 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
40 | 5, 39 | pm2.61dan 809 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 dom cdm 5580 “ cima 5583 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ℝ*cxr 10939 < clt 10940 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ℝ+crp 12659 [,)cico 13010 seqcseq 13649 ↑cexp 13710 abscabs 14873 ⇝ cli 15121 Σcsu 15325 ↑𝑐ccxp 25616 C𝑐cbcc 41843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-prod 15544 df-risefac 15644 df-fallfac 15645 df-ef 15705 df-sin 15707 df-cos 15708 df-tan 15709 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-ulm 25441 df-log 25617 df-cxp 25618 df-bcc 41844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |