| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxp | Structured version Visualization version GIF version | ||
| Description: Generalize the binomial theorem binom 15847 to positive real summand 𝐴, real summand 𝐵, and complex exponent 𝐶. Proof in https://en.wikibooks.org/wiki/Advanced_Calculus 15847; see also https://en.wikipedia.org/wiki/Binomial_series 15847, https://en.wikipedia.org/wiki/Binomial_theorem 15847 (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem 15847. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
| binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| binomcxp | ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binomcxp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | binomcxp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | binomcxp.lt | . . 3 ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) | |
| 4 | binomcxp.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | 1, 2, 3, 4 | binomcxplemnn0 44301 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
| 6 | eqid 2734 | . . 3 ⊢ (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
| 7 | fveq2 6885 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) | |
| 8 | oveq2 7420 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑏↑𝑥) = (𝑏↑𝑘)) | |
| 9 | 7, 8 | oveq12d 7430 | . . . . 5 ⊢ (𝑥 = 𝑘 → (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)) = (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘))) |
| 10 | 9 | cbvmptv 5235 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))) = (𝑘 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘))) |
| 11 | 10 | mpteq2i 5227 | . . 3 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘)))) |
| 12 | eqid 2734 | . . 3 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 13 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → 𝑥 = 𝑘) | |
| 14 | oveq2 7420 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑗 → (𝐶C𝑐𝑦) = (𝐶C𝑐𝑗)) | |
| 15 | 14 | cbvmptv 5235 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
| 16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
| 17 | 16, 13 | fveq12d 6892 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) |
| 18 | 13, 17 | oveq12d 7430 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) = (𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘))) |
| 19 | oveq1 7419 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝑥 − 1) = (𝑘 − 1)) | |
| 20 | 19 | oveq2d 7428 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑏↑(𝑥 − 1)) = (𝑏↑(𝑘 − 1))) |
| 21 | 18, 20 | oveq12d 7430 | . . . . 5 ⊢ (𝑥 = 𝑘 → ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1))) = ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
| 22 | 21 | cbvmptv 5235 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
| 23 | 22 | mpteq2i 5227 | . . 3 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ ↦ ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1))))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
| 24 | oveq2 7420 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 = 𝑗 → (𝐶C𝑐𝑥) = (𝐶C𝑐𝑗)) | |
| 25 | 24 | cbvmptv 5235 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
| 26 | 25 | fveq1i 6886 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) |
| 27 | 26 | oveq1i 7422 | . . . . . . . . . . . 12 ⊢ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥)) = (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)) |
| 28 | 27 | mpteq2i 5227 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))) = (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))) |
| 29 | 28 | mpteq2i 5227 | . . . . . . . . . 10 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥)))) = (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)))) |
| 30 | 29 | fveq1i 6886 | . . . . . . . . 9 ⊢ ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟) = ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟) |
| 31 | seqeq3 14028 | . . . . . . . . 9 ⊢ (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟) = ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟) → seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟))) | |
| 32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) |
| 33 | 32 | eleq1i 2824 | . . . . . . 7 ⊢ (seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ ) |
| 34 | 33 | rabbii 3425 | . . . . . 6 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ } = {𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ } |
| 35 | 34 | supeq1i 9468 | . . . . 5 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| 36 | 35 | oveq2i 7423 | . . . 4 ⊢ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) = (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
| 37 | 36 | imaeq2i 6056 | . . 3 ⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) = (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) |
| 38 | eqid 2734 | . . 3 ⊢ (𝑏 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑏)‘𝑘)) = (𝑏 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑏)‘𝑘)) | |
| 39 | 1, 2, 3, 4, 6, 11, 12, 23, 37, 38 | binomcxplemnotnn0 44308 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
| 40 | 5, 39 | pm2.61dan 812 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 class class class wbr 5123 ↦ cmpt 5205 ◡ccnv 5664 dom cdm 5665 “ cima 5668 ‘cfv 6540 (class class class)co 7412 supcsup 9461 ℂcc 11134 ℝcr 11135 0cc0 11136 1c1 11137 + caddc 11139 · cmul 11141 ℝ*cxr 11275 < clt 11276 − cmin 11473 ℕcn 12247 ℕ0cn0 12508 ℝ+crp 13015 [,)cico 13370 seqcseq 14023 ↑cexp 14083 abscabs 15254 ⇝ cli 15501 Σcsu 15703 ↑𝑐ccxp 26532 C𝑐cbcc 44288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-fi 9432 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-q 12972 df-rp 13016 df-xneg 13135 df-xadd 13136 df-xmul 13137 df-ioo 13372 df-ioc 13373 df-ico 13374 df-icc 13375 df-fz 13529 df-fzo 13676 df-fl 13813 df-mod 13891 df-seq 14024 df-exp 14084 df-fac 14294 df-bc 14323 df-hash 14351 df-shft 15087 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-limsup 15488 df-clim 15505 df-rlim 15506 df-sum 15704 df-prod 15921 df-risefac 16023 df-fallfac 16024 df-ef 16084 df-sin 16086 df-cos 16087 df-tan 16088 df-pi 16089 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-starv 17287 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-unif 17295 df-hom 17296 df-cco 17297 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-submnd 18765 df-mulg 19054 df-cntz 19303 df-cmn 19767 df-psmet 21317 df-xmet 21318 df-met 21319 df-bl 21320 df-mopn 21321 df-fbas 21322 df-fg 21323 df-cnfld 21326 df-top 22847 df-topon 22864 df-topsp 22886 df-bases 22899 df-cld 22972 df-ntr 22973 df-cls 22974 df-nei 23051 df-lp 23089 df-perf 23090 df-cn 23180 df-cnp 23181 df-haus 23268 df-cmp 23340 df-tx 23515 df-hmeo 23708 df-fil 23799 df-fm 23891 df-flim 23892 df-flf 23893 df-xms 24274 df-ms 24275 df-tms 24276 df-cncf 24839 df-limc 25836 df-dv 25837 df-ulm 26355 df-log 26533 df-cxp 26534 df-bcc 44289 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |