| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxp | Structured version Visualization version GIF version | ||
| Description: Generalize the binomial theorem binom 15734 to positive real summand 𝐴, real summand 𝐵, and complex exponent 𝐶. Proof in https://en.wikibooks.org/wiki/Advanced_Calculus 15734; see also https://en.wikipedia.org/wiki/Binomial_series 15734, https://en.wikipedia.org/wiki/Binomial_theorem 15734 (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem 15734. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
| binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| binomcxp | ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binomcxp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | binomcxp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | binomcxp.lt | . . 3 ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) | |
| 4 | binomcxp.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | 1, 2, 3, 4 | binomcxplemnn0 44381 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
| 6 | eqid 2731 | . . 3 ⊢ (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
| 7 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) | |
| 8 | oveq2 7354 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑏↑𝑥) = (𝑏↑𝑘)) | |
| 9 | 7, 8 | oveq12d 7364 | . . . . 5 ⊢ (𝑥 = 𝑘 → (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)) = (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘))) |
| 10 | 9 | cbvmptv 5195 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))) = (𝑘 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘))) |
| 11 | 10 | mpteq2i 5187 | . . 3 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘)))) |
| 12 | eqid 2731 | . . 3 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 13 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → 𝑥 = 𝑘) | |
| 14 | oveq2 7354 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑗 → (𝐶C𝑐𝑦) = (𝐶C𝑐𝑗)) | |
| 15 | 14 | cbvmptv 5195 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
| 16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
| 17 | 16, 13 | fveq12d 6829 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) |
| 18 | 13, 17 | oveq12d 7364 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) = (𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘))) |
| 19 | oveq1 7353 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝑥 − 1) = (𝑘 − 1)) | |
| 20 | 19 | oveq2d 7362 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑏↑(𝑥 − 1)) = (𝑏↑(𝑘 − 1))) |
| 21 | 18, 20 | oveq12d 7364 | . . . . 5 ⊢ (𝑥 = 𝑘 → ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1))) = ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
| 22 | 21 | cbvmptv 5195 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
| 23 | 22 | mpteq2i 5187 | . . 3 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ ↦ ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1))))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
| 24 | oveq2 7354 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 = 𝑗 → (𝐶C𝑐𝑥) = (𝐶C𝑐𝑗)) | |
| 25 | 24 | cbvmptv 5195 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
| 26 | 25 | fveq1i 6823 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) |
| 27 | 26 | oveq1i 7356 | . . . . . . . . . . . 12 ⊢ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥)) = (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)) |
| 28 | 27 | mpteq2i 5187 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))) = (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))) |
| 29 | 28 | mpteq2i 5187 | . . . . . . . . . 10 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥)))) = (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)))) |
| 30 | 29 | fveq1i 6823 | . . . . . . . . 9 ⊢ ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟) = ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟) |
| 31 | seqeq3 13910 | . . . . . . . . 9 ⊢ (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟) = ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟) → seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟))) | |
| 32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) |
| 33 | 32 | eleq1i 2822 | . . . . . . 7 ⊢ (seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ ) |
| 34 | 33 | rabbii 3400 | . . . . . 6 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ } = {𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ } |
| 35 | 34 | supeq1i 9331 | . . . . 5 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| 36 | 35 | oveq2i 7357 | . . . 4 ⊢ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) = (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
| 37 | 36 | imaeq2i 6007 | . . 3 ⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) = (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) |
| 38 | eqid 2731 | . . 3 ⊢ (𝑏 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑏)‘𝑘)) = (𝑏 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑏)‘𝑘)) | |
| 39 | 1, 2, 3, 4, 6, 11, 12, 23, 37, 38 | binomcxplemnotnn0 44388 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
| 40 | 5, 39 | pm2.61dan 812 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5091 ↦ cmpt 5172 ◡ccnv 5615 dom cdm 5616 “ cima 5619 ‘cfv 6481 (class class class)co 7346 supcsup 9324 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 ℝ*cxr 11142 < clt 11143 − cmin 11341 ℕcn 12122 ℕ0cn0 12378 ℝ+crp 12887 [,)cico 13244 seqcseq 13905 ↑cexp 13965 abscabs 15138 ⇝ cli 15388 Σcsu 15590 ↑𝑐ccxp 26489 C𝑐cbcc 44368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-prod 15808 df-risefac 15910 df-fallfac 15911 df-ef 15971 df-sin 15973 df-cos 15974 df-tan 15975 df-pi 15976 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-cmp 23300 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-ulm 26311 df-log 26490 df-cxp 26491 df-bcc 44369 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |