![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxp | Structured version Visualization version GIF version |
Description: Generalize the binomial theorem binom 15715 to positive real summand 𝐴, real summand 𝐵, and complex exponent 𝐶. Proof in https://en.wikibooks.org/wiki/Advanced_Calculus 15715; see also https://en.wikipedia.org/wiki/Binomial_series 15715, https://en.wikipedia.org/wiki/Binomial_theorem 15715 (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem 15715. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
binomcxp | ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | binomcxp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | binomcxp.lt | . . 3 ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) | |
4 | binomcxp.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 1, 2, 3, 4 | binomcxplemnn0 42619 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
6 | eqid 2736 | . . 3 ⊢ (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
7 | fveq2 6842 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) | |
8 | oveq2 7365 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑏↑𝑥) = (𝑏↑𝑘)) | |
9 | 7, 8 | oveq12d 7375 | . . . . 5 ⊢ (𝑥 = 𝑘 → (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)) = (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘))) |
10 | 9 | cbvmptv 5218 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))) = (𝑘 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘))) |
11 | 10 | mpteq2i 5210 | . . 3 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘) · (𝑏↑𝑘)))) |
12 | eqid 2736 | . . 3 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
13 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → 𝑥 = 𝑘) | |
14 | oveq2 7365 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑗 → (𝐶C𝑐𝑦) = (𝐶C𝑐𝑗)) | |
15 | 14 | cbvmptv 5218 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
17 | 16, 13 | fveq12d 6849 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) |
18 | 13, 17 | oveq12d 7375 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) = (𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘))) |
19 | oveq1 7364 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝑥 − 1) = (𝑘 − 1)) | |
20 | 19 | oveq2d 7373 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑏↑(𝑥 − 1)) = (𝑏↑(𝑘 − 1))) |
21 | 18, 20 | oveq12d 7375 | . . . . 5 ⊢ (𝑥 = 𝑘 → ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1))) = ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
22 | 21 | cbvmptv 5218 | . . . 4 ⊢ (𝑥 ∈ ℕ ↦ ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
23 | 22 | mpteq2i 5210 | . . 3 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ ↦ ((𝑥 · ((𝑦 ∈ ℕ0 ↦ (𝐶C𝑐𝑦))‘𝑥)) · (𝑏↑(𝑥 − 1))))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
24 | oveq2 7365 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 = 𝑗 → (𝐶C𝑐𝑥) = (𝐶C𝑐𝑗)) | |
25 | 24 | cbvmptv 5218 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥)) = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
26 | 25 | fveq1i 6843 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) = ((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) |
27 | 26 | oveq1i 7367 | . . . . . . . . . . . 12 ⊢ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥)) = (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)) |
28 | 27 | mpteq2i 5210 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))) = (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))) |
29 | 28 | mpteq2i 5210 | . . . . . . . . . 10 ⊢ (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥)))) = (𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥)))) |
30 | 29 | fveq1i 6843 | . . . . . . . . 9 ⊢ ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟) = ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟) |
31 | seqeq3 13911 | . . . . . . . . 9 ⊢ (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟) = ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟) → seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) |
33 | 32 | eleq1i 2828 | . . . . . . 7 ⊢ (seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ ) |
34 | 33 | rabbii 3413 | . . . . . 6 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ } = {𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ } |
35 | 34 | supeq1i 9383 | . . . . 5 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
36 | 35 | oveq2i 7368 | . . . 4 ⊢ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) = (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
37 | 36 | imaeq2i 6011 | . . 3 ⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) = (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) |
38 | eqid 2736 | . . 3 ⊢ (𝑏 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑏)‘𝑘)) = (𝑏 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (𝐶C𝑐𝑥))‘𝑥) · (𝑏↑𝑥))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑏 ∈ ℂ ↦ (𝑥 ∈ ℕ0 ↦ (((𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))‘𝑥) · (𝑏↑𝑥))))‘𝑏)‘𝑘)) | |
39 | 1, 2, 3, 4, 6, 11, 12, 23, 37, 38 | binomcxplemnotnn0 42626 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
40 | 5, 39 | pm2.61dan 811 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3407 class class class wbr 5105 ↦ cmpt 5188 ◡ccnv 5632 dom cdm 5633 “ cima 5636 ‘cfv 6496 (class class class)co 7357 supcsup 9376 ℂcc 11049 ℝcr 11050 0cc0 11051 1c1 11052 + caddc 11054 · cmul 11056 ℝ*cxr 11188 < clt 11189 − cmin 11385 ℕcn 12153 ℕ0cn0 12413 ℝ+crp 12915 [,)cico 13266 seqcseq 13906 ↑cexp 13967 abscabs 15119 ⇝ cli 15366 Σcsu 15570 ↑𝑐ccxp 25911 C𝑐cbcc 42606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-prod 15789 df-risefac 15889 df-fallfac 15890 df-ef 15950 df-sin 15952 df-cos 15953 df-tan 15954 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-cmp 22738 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 df-ulm 25736 df-log 25912 df-cxp 25913 df-bcc 42607 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |