Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42e Structured version   Visualization version   GIF version

Theorem cdleme42e 38230
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Mar-2013.)
Hypotheses
Ref Expression
cdleme41.b 𝐵 = (Base‘𝐾)
cdleme41.l = (le‘𝐾)
cdleme41.j = (join‘𝐾)
cdleme41.m = (meet‘𝐾)
cdleme41.a 𝐴 = (Atoms‘𝐾)
cdleme41.h 𝐻 = (LHyp‘𝐾)
cdleme41.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme41.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme41.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme41.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme41.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme41.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme41.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme41.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
cdleme34e.v 𝑉 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdleme42e ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → (𝐹‘(𝑅 𝑉)) = (𝑅 / 𝑠𝑁 ((𝑅 𝑉) 𝑊)))
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   𝑈,𝑠   𝑊,𝑠   𝑦,𝑡,𝐴,𝑠   𝐵,𝑠,𝑡,𝑦   𝑦,𝐷   𝑦,𝐺   𝐸,𝑠,𝑦   𝐻,𝑠,𝑡,𝑦   𝑡, ,𝑦   𝐾,𝑠,𝑡,𝑦   𝑡, ,𝑦   𝑡, ,𝑦   𝑡,𝑃,𝑦   𝑡,𝑄,𝑦   𝑡,𝑅,𝑦   𝑡,𝑆,𝑦   𝑡,𝑈,𝑦   𝑡,𝑊,𝑦   𝑥,𝑧,𝐴   𝑥,𝐵,𝑧   𝑧,𝐸,𝑠   𝑧,𝐻   𝑥, ,𝑧   𝑧,𝐾   𝑥, ,𝑧   𝑥, ,𝑧   𝑥,𝑁,𝑧   𝑥,𝑃,𝑧   𝑥,𝑄,𝑧   𝑥,𝑅,𝑧   𝑥,𝑆,𝑧   𝑥,𝑈,𝑧   𝑥,𝑊,𝑧,𝑠,𝑡,𝑦   𝑉,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑥,𝑧,𝑡,𝑠)   𝐸(𝑥,𝑡)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑥,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑉(𝑦)

Proof of Theorem cdleme42e
StepHypRef Expression
1 simp1 1138 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
2 simp11l 1286 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
32hllatd 37115 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
4 simp2ll 1242 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → 𝑅𝐴)
5 cdleme41.b . . . . 5 𝐵 = (Base‘𝐾)
6 cdleme41.a . . . . 5 𝐴 = (Atoms‘𝐾)
75, 6atbase 37040 . . . 4 (𝑅𝐴𝑅𝐵)
84, 7syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → 𝑅𝐵)
9 simp11 1205 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simp2rl 1244 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → 𝑆𝐴)
11 cdleme41.l . . . . 5 = (le‘𝐾)
12 cdleme41.j . . . . 5 = (join‘𝐾)
13 cdleme41.m . . . . 5 = (meet‘𝐾)
14 cdleme41.h . . . . 5 𝐻 = (LHyp‘𝐾)
15 cdleme34e.v . . . . 5 𝑉 = ((𝑅 𝑆) 𝑊)
1611, 12, 13, 6, 14, 15, 5cdleme0aa 37961 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴𝑆𝐴) → 𝑉𝐵)
179, 4, 10, 16syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → 𝑉𝐵)
185, 12latjcl 17945 . . 3 ((𝐾 ∈ Lat ∧ 𝑅𝐵𝑉𝐵) → (𝑅 𝑉) ∈ 𝐵)
193, 8, 17, 18syl3anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → (𝑅 𝑉) ∈ 𝐵)
20 simp3 1140 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → 𝑃𝑄)
21 simp2l 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
22 simp2r 1202 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
235, 11, 12, 13, 6, 14, 15cdleme42c 38223 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ¬ (𝑅 𝑉) 𝑊)
249, 21, 22, 23syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → ¬ (𝑅 𝑉) 𝑊)
2520, 24jca 515 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → (𝑃𝑄 ∧ ¬ (𝑅 𝑉) 𝑊))
265, 11, 12, 13, 6, 14, 15cdleme42d 38224 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑅 ((𝑅 𝑉) 𝑊)) = (𝑅 𝑉))
279, 21, 22, 26syl3anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → (𝑅 ((𝑅 𝑉) 𝑊)) = (𝑅 𝑉))
28 cdleme41.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
29 cdleme41.d . . 3 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
30 cdleme41.e . . 3 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
31 cdleme41.g . . 3 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
32 cdleme41.i . . 3 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
33 cdleme41.n . . 3 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
34 cdleme41.o . . 3 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
35 cdleme41.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
365, 11, 12, 13, 6, 14, 28, 29, 30, 31, 32, 33, 34, 35cdleme42b 38229 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅 𝑉) ∈ 𝐵 ∧ (𝑃𝑄 ∧ ¬ (𝑅 𝑉) 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 ((𝑅 𝑉) 𝑊)) = (𝑅 𝑉))) → (𝐹‘(𝑅 𝑉)) = (𝑅 / 𝑠𝑁 ((𝑅 𝑉) 𝑊)))
371, 19, 25, 21, 27, 36syl122anc 1381 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑃𝑄) → (𝐹‘(𝑅 𝑉)) = (𝑅 / 𝑠𝑁 ((𝑅 𝑉) 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  csb 3811  ifcif 4439   class class class wbr 5053  cmpt 5135  cfv 6380  crio 7169  (class class class)co 7213  Basecbs 16760  lecple 16809  joincjn 17818  meetcmee 17819  Latclat 17937  Atomscatm 37014  HLchlt 37101  LHypclh 37735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-riotaBAD 36704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-undef 8015  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-llines 37249  df-lplanes 37250  df-lvols 37251  df-lines 37252  df-psubsp 37254  df-pmap 37255  df-padd 37547  df-lhyp 37739
This theorem is referenced by:  cdleme42f  38231
  Copyright terms: Public domain W3C validator