Proof of Theorem cdleme42e
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
2 | | simp11l 1283 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) |
3 | 2 | hllatd 37378 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) |
4 | | simp2ll 1239 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑅 ∈ 𝐴) |
5 | | cdleme41.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
6 | | cdleme41.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 5, 6 | atbase 37303 |
. . . 4
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
8 | 4, 7 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑅 ∈ 𝐵) |
9 | | simp11 1202 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
10 | | simp2rl 1241 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑆 ∈ 𝐴) |
11 | | cdleme41.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
12 | | cdleme41.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
13 | | cdleme41.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
14 | | cdleme41.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
15 | | cdleme34e.v |
. . . . 5
⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
16 | 11, 12, 13, 6, 14, 15, 5 | cdleme0aa 38224 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑉 ∈ 𝐵) |
17 | 9, 4, 10, 16 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑉 ∈ 𝐵) |
18 | 5, 12 | latjcl 18157 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (𝑅 ∨ 𝑉) ∈ 𝐵) |
19 | 3, 8, 17, 18 | syl3anc 1370 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑅 ∨ 𝑉) ∈ 𝐵) |
20 | | simp3 1137 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) |
21 | | simp2l 1198 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
22 | | simp2r 1199 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
23 | 5, 11, 12, 13, 6, 14, 15 | cdleme42c 38486 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → ¬ (𝑅 ∨ 𝑉) ≤ 𝑊) |
24 | 9, 21, 22, 23 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ¬ (𝑅 ∨ 𝑉) ≤ 𝑊) |
25 | 20, 24 | jca 512 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑃 ≠ 𝑄 ∧ ¬ (𝑅 ∨ 𝑉) ≤ 𝑊)) |
26 | 5, 11, 12, 13, 6, 14, 15 | cdleme42d 38487 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → (𝑅 ∨ ((𝑅 ∨ 𝑉) ∧ 𝑊)) = (𝑅 ∨ 𝑉)) |
27 | 9, 21, 22, 26 | syl3anc 1370 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑅 ∨ ((𝑅 ∨ 𝑉) ∧ 𝑊)) = (𝑅 ∨ 𝑉)) |
28 | | cdleme41.u |
. . 3
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
29 | | cdleme41.d |
. . 3
⊢ 𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
30 | | cdleme41.e |
. . 3
⊢ 𝐸 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
31 | | cdleme41.g |
. . 3
⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
32 | | cdleme41.i |
. . 3
⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) |
33 | | cdleme41.n |
. . 3
⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
34 | | cdleme41.o |
. . 3
⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) |
35 | | cdleme41.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
36 | 5, 11, 12, 13, 6, 14, 28, 29, 30, 31, 32, 33, 34, 35 | cdleme42b 38492 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∨ 𝑉) ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅 ∨ 𝑉) ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ ((𝑅 ∨ 𝑉) ∧ 𝑊)) = (𝑅 ∨ 𝑉))) → (𝐹‘(𝑅 ∨ 𝑉)) = (⦋𝑅 / 𝑠⦌𝑁 ∨ ((𝑅 ∨ 𝑉) ∧ 𝑊))) |
37 | 1, 19, 25, 21, 27, 36 | syl122anc 1378 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝐹‘(𝑅 ∨ 𝑉)) = (⦋𝑅 / 𝑠⦌𝑁 ∨ ((𝑅 ∨ 𝑉) ∧ 𝑊))) |