Proof of Theorem cdlemg17a
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | cdlemg12.l |
. 2
⊢ ≤ =
(le‘𝐾) |
3 | | simp1l 1198 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37001 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ Lat) |
5 | | simp1 1137 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | | simp3l 1202 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝐺 ∈ 𝑇) |
7 | | simp2ll 1241 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
8 | | cdlemg12.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
9 | | cdlemg12.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
10 | | cdlemg12.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
11 | 2, 8, 9, 10 | ltrnat 37777 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐺‘𝑃) ∈ 𝐴) |
12 | 5, 6, 7, 11 | syl3anc 1372 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑃) ∈ 𝐴) |
13 | 1, 8 | atbase 36926 |
. . 3
⊢ ((𝐺‘𝑃) ∈ 𝐴 → (𝐺‘𝑃) ∈ (Base‘𝐾)) |
14 | 12, 13 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑃) ∈ (Base‘𝐾)) |
15 | | cdlemg12.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
16 | 1, 15, 8 | hlatjcl 37004 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐺‘𝑃) ∈ 𝐴) → (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾)) |
17 | 3, 7, 12, 16 | syl3anc 1372 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾)) |
18 | | simp2rl 1243 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
19 | 1, 15, 8 | hlatjcl 37004 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
20 | 3, 7, 18, 19 | syl3anc 1372 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
21 | 2, 15, 8 | hlatlej2 37013 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐺‘𝑃) ∈ 𝐴) → (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐺‘𝑃))) |
22 | 3, 7, 12, 21 | syl3anc 1372 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐺‘𝑃))) |
23 | | simp2l 1200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
24 | | cdlemg12.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
25 | | eqid 2738 |
. . . . 5
⊢ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) |
26 | 2, 15, 24, 8, 9, 25 | cdleme0cp 37851 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ∈ 𝐴)) → (𝑃 ∨ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) = (𝑃 ∨ (𝐺‘𝑃))) |
27 | 5, 23, 12, 26 | syl12anc 836 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) = (𝑃 ∨ (𝐺‘𝑃))) |
28 | 2, 15, 8 | hlatlej1 37012 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
29 | 3, 7, 18, 28 | syl3anc 1372 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
30 | | cdlemg12b.r |
. . . . . . 7
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
31 | 2, 15, 24, 8, 9, 10, 30 | trlval2 37800 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) |
32 | 5, 6, 23, 31 | syl3anc 1372 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) |
33 | | simp3r 1203 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄)) |
34 | 32, 33 | eqbrtrrd 5054 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
35 | 1, 8 | atbase 36926 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
36 | 7, 35 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ (Base‘𝐾)) |
37 | | simp1r 1199 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ 𝐻) |
38 | 1, 9 | lhpbase 37635 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
39 | 37, 38 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ (Base‘𝐾)) |
40 | 1, 24 | latmcl 17778 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ∈ (Base‘𝐾)) |
41 | 4, 17, 39, 40 | syl3anc 1372 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ∈ (Base‘𝐾)) |
42 | 1, 2, 15 | latjle12 17788 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) ↔ (𝑃 ∨ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) ≤ (𝑃 ∨ 𝑄))) |
43 | 4, 36, 41, 20, 42 | syl13anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) ↔ (𝑃 ∨ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) ≤ (𝑃 ∨ 𝑄))) |
44 | 29, 34, 43 | mpbi2and 712 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) ≤ (𝑃 ∨ 𝑄)) |
45 | 27, 44 | eqbrtrrd 5054 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ (𝐺‘𝑃)) ≤ (𝑃 ∨ 𝑄)) |
46 | 1, 2, 4, 14, 17, 20, 22, 45 | lattrd 17784 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑃) ≤ (𝑃 ∨ 𝑄)) |