Proof of Theorem cdlemg2kq
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp2r 1199 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
3 | | simp2l 1198 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
4 | | simp3 1137 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) |
5 | | cdlemg2inv.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | cdlemg2inv.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
7 | | cdlemg2j.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
8 | | cdlemg2j.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
9 | | cdlemg2j.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
10 | | cdlemg2j.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
11 | | eqid 2738 |
. . . 4
⊢ ((𝑄 ∨ 𝑃) ∧ 𝑊) = ((𝑄 ∨ 𝑃) ∧ 𝑊) |
12 | 5, 6, 7, 8, 9, 10,
11 | cdlemg2k 38615 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = ((𝐹‘𝑄) ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊))) |
13 | 1, 2, 3, 4, 12 | syl121anc 1374 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = ((𝐹‘𝑄) ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊))) |
14 | | simp1l 1196 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ HL) |
15 | | simp2ll 1239 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑃 ∈ 𝐴) |
16 | 7, 9, 5, 6 | ltrnat 38154 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
17 | 1, 4, 15, 16 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘𝑃) ∈ 𝐴) |
18 | | simp2rl 1241 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑄 ∈ 𝐴) |
19 | 7, 9, 5, 6 | ltrnat 38154 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐹‘𝑄) ∈ 𝐴) |
20 | 1, 4, 18, 19 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘𝑄) ∈ 𝐴) |
21 | 8, 9 | hlatjcom 37382 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑃) ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) |
22 | 14, 17, 20, 21 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) |
23 | | cdlemg2j.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
24 | 8, 9 | hlatjcom 37382 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
25 | 14, 15, 18, 24 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
26 | 25 | oveq1d 7290 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑄 ∨ 𝑃) ∧ 𝑊)) |
27 | 23, 26 | eqtrid 2790 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑈 = ((𝑄 ∨ 𝑃) ∧ 𝑊)) |
28 | 27 | oveq2d 7291 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑄) ∨ 𝑈) = ((𝐹‘𝑄) ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊))) |
29 | 13, 22, 28 | 3eqtr4d 2788 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑄) ∨ 𝑈)) |