Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg8a Structured version   Visualization version   GIF version

Theorem cdlemg8a 37214
Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg8a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Proof of Theorem cdlemg8a
StepHypRef Expression
1 simp1 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1180 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 cdlemg8.l . . . 4 = (le‘𝐾)
4 cdlemg8.m . . . 4 = (meet‘𝐾)
5 eqid 2778 . . . 4 (0.‘𝐾) = (0.‘𝐾)
6 cdlemg8.a . . . 4 𝐴 = (Atoms‘𝐾)
7 cdlemg8.h . . . 4 𝐻 = (LHyp‘𝐾)
83, 4, 5, 6, 7lhpmat 36617 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (0.‘𝐾))
91, 2, 8syl2anc 576 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑄 𝑊) = (0.‘𝐾))
10 cdlemg8.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
113, 6, 7, 10cdlemg6 37210 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑄)) = 𝑄)
1211oveq2d 6992 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑄 (𝐹‘(𝐺𝑄))) = (𝑄 𝑄))
13 simp1l 1177 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ HL)
14 simp2rl 1222 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑄𝐴)
15 cdlemg8.j . . . . . 6 = (join‘𝐾)
1615, 6hlatjidm 35956 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
1713, 14, 16syl2anc 576 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑄 𝑄) = 𝑄)
1812, 17eqtrd 2814 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑄 (𝐹‘(𝐺𝑄))) = 𝑄)
1918oveq1d 6991 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊) = (𝑄 𝑊))
20 simp33 1191 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑃)) = 𝑃)
2120oveq2d 6992 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 𝑃))
22 simp2ll 1220 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑃𝐴)
2315, 6hlatjidm 35956 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
2413, 22, 23syl2anc 576 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 𝑃) = 𝑃)
2521, 24eqtrd 2814 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) = 𝑃)
2625oveq1d 6991 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = (𝑃 𝑊))
27 simp2l 1179 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
283, 4, 5, 6, 7lhpmat 36617 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
291, 27, 28syl2anc 576 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 𝑊) = (0.‘𝐾))
3026, 29eqtrd 2814 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = (0.‘𝐾))
319, 19, 303eqtr4rd 2825 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050   class class class wbr 4929  cfv 6188  (class class class)co 6976  lecple 16428  joincjn 17412  meetcmee 17413  0.cp0 17505  Atomscatm 35850  HLchlt 35937  LHypclh 36571  LTrncltrn 36688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-riotaBAD 35540
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-undef 7742  df-map 8208  df-proset 17396  df-poset 17414  df-plt 17426  df-lub 17442  df-glb 17443  df-join 17444  df-meet 17445  df-p0 17507  df-p1 17508  df-lat 17514  df-clat 17576  df-oposet 35763  df-ol 35765  df-oml 35766  df-covers 35853  df-ats 35854  df-atl 35885  df-cvlat 35909  df-hlat 35938  df-llines 36085  df-lplanes 36086  df-lvols 36087  df-lines 36088  df-psubsp 36090  df-pmap 36091  df-padd 36383  df-lhyp 36575  df-laut 36576  df-ldil 36691  df-ltrn 36692  df-trl 36746
This theorem is referenced by:  cdlemg8  37218
  Copyright terms: Public domain W3C validator