Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn9 Structured version   Visualization version   GIF version

Theorem cdlemn9 38208
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b 𝐵 = (Base‘𝐾)
cdlemn8.l = (le‘𝐾)
cdlemn8.a 𝐴 = (Atoms‘𝐾)
cdlemn8.h 𝐻 = (LHyp‘𝐾)
cdlemn8.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn8.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
cdlemn8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn8.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemn8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
cdlemn8.s + = (+g𝑈)
cdlemn8.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn8.g 𝐺 = (𝑇 (𝑃) = 𝑅)
Assertion
Ref Expression
cdlemn9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑔𝑄) = 𝑅)
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑇,   𝑃,   𝑄,   ,𝑊   𝑅,
Allowed substitution hints:   𝐴(𝑔,𝑠)   𝐵(𝑔,𝑠)   𝑃(𝑔,𝑠)   + (𝑔,,𝑠)   𝑄(𝑔,𝑠)   𝑅(𝑔,𝑠)   𝑇(𝑔,𝑠)   𝑈(𝑔,,𝑠)   𝐸(𝑔,,𝑠)   𝐹(𝑔,,𝑠)   𝐺(𝑔,,𝑠)   𝐻(𝑔,𝑠)   𝐾(𝑔,𝑠)   (𝑔,𝑠)   𝑂(𝑔,,𝑠)   𝑊(𝑔,𝑠)

Proof of Theorem cdlemn9
StepHypRef Expression
1 cdlemn8.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemn8.l . . . 4 = (le‘𝐾)
3 cdlemn8.a . . . 4 𝐴 = (Atoms‘𝐾)
4 cdlemn8.h . . . 4 𝐻 = (LHyp‘𝐾)
5 cdlemn8.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
6 cdlemn8.o . . . 4 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
7 cdlemn8.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemn8.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 cdlemn8.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 cdlemn8.s . . . 4 + = (+g𝑈)
11 cdlemn8.f . . . 4 𝐹 = (𝑇 (𝑃) = 𝑄)
12 cdlemn8.g . . . 4 𝐺 = (𝑇 (𝑃) = 𝑅)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemn8 38207 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝑔 = (𝐺𝐹))
1413fveq1d 6669 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑔𝑄) = ((𝐺𝐹)‘𝑄))
15 simp1 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
162, 3, 4, 5lhpocnel2 37022 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
17163ad2ant1 1127 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
18 simp2l 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
192, 3, 4, 7, 11ltrniotacl 37582 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
2015, 17, 18, 19syl3anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝐹𝑇)
211, 4, 7ltrn1o 37127 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
2215, 20, 21syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝐹:𝐵1-1-onto𝐵)
23 f1ocnv 6624 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵)
24 f1of 6612 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
2522, 23, 243syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝐹:𝐵𝐵)
26 simp2ll 1234 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝑄𝐴)
271, 3atbase 36292 . . . 4 (𝑄𝐴𝑄𝐵)
2826, 27syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝑄𝐵)
29 fvco3 6757 . . 3 ((𝐹:𝐵𝐵𝑄𝐵) → ((𝐺𝐹)‘𝑄) = (𝐺‘(𝐹𝑄)))
3025, 28, 29syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → ((𝐺𝐹)‘𝑄) = (𝐺‘(𝐹𝑄)))
312, 3, 4, 7, 11ltrniotacnvval 37585 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑄) = 𝑃)
3215, 17, 18, 31syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐹𝑄) = 𝑃)
3332fveq2d 6671 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐺‘(𝐹𝑄)) = (𝐺𝑃))
34 simp2r 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
352, 3, 4, 7, 12ltrniotaval 37584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
3615, 17, 34, 35syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐺𝑃) = 𝑅)
3733, 36eqtrd 2861 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐺‘(𝐹𝑄)) = 𝑅)
3814, 30, 373eqtrd 2865 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑔𝑄) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  cop 4570   class class class wbr 5063  cmpt 5143   I cid 5458  ccnv 5553  cres 5556  ccom 5558  wf 6348  1-1-ontowf1o 6351  cfv 6352  crio 7105  (class class class)co 7148  Basecbs 16473  +gcplusg 16555  lecple 16562  occoc 16563  Atomscatm 36266  HLchlt 36353  LHypclh 36987  LTrncltrn 37104  TEndoctendo 37755  DVecHcdvh 38081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 35956
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-undef 7930  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-mulr 16569  df-sca 16571  df-vsca 16572  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-oposet 36179  df-ol 36181  df-oml 36182  df-covers 36269  df-ats 36270  df-atl 36301  df-cvlat 36325  df-hlat 36354  df-llines 36501  df-lplanes 36502  df-lvols 36503  df-lines 36504  df-psubsp 36506  df-pmap 36507  df-padd 36799  df-lhyp 36991  df-laut 36992  df-ldil 37107  df-ltrn 37108  df-trl 37162  df-tendo 37758  df-edring 37760  df-dvech 38082
This theorem is referenced by:  cdlemn11pre  38213
  Copyright terms: Public domain W3C validator