Proof of Theorem cdlemn9
Step | Hyp | Ref
| Expression |
1 | | cdlemn8.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdlemn8.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | | cdlemn8.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | cdlemn8.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | cdlemn8.p |
. . . 4
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
6 | | cdlemn8.o |
. . . 4
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
7 | | cdlemn8.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
8 | | cdlemn8.e |
. . . 4
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
9 | | cdlemn8.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
10 | | cdlemn8.s |
. . . 4
⊢ + =
(+g‘𝑈) |
11 | | cdlemn8.f |
. . . 4
⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
12 | | cdlemn8.g |
. . . 4
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | cdlemn8 38814 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝑔 = (𝐺 ∘ ◡𝐹)) |
14 | 13 | fveq1d 6665 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑔‘𝑄) = ((𝐺 ∘ ◡𝐹)‘𝑄)) |
15 | | simp1 1133 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | 2, 3, 4, 5 | lhpocnel2 37629 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
17 | 16 | 3ad2ant1 1130 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
18 | | simp2l 1196 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
19 | 2, 3, 4, 7, 11 | ltrniotacl 38189 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
20 | 15, 17, 18, 19 | syl3anc 1368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝐹 ∈ 𝑇) |
21 | 1, 4, 7 | ltrn1o 37734 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
22 | 15, 20, 21 | syl2anc 587 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝐹:𝐵–1-1-onto→𝐵) |
23 | | f1ocnv 6619 |
. . . 4
⊢ (𝐹:𝐵–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐵) |
24 | | f1of 6607 |
. . . 4
⊢ (◡𝐹:𝐵–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐵) |
25 | 22, 23, 24 | 3syl 18 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → ◡𝐹:𝐵⟶𝐵) |
26 | | simp2ll 1237 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝑄 ∈ 𝐴) |
27 | 1, 3 | atbase 36899 |
. . . 4
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
28 | 26, 27 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝑄 ∈ 𝐵) |
29 | | fvco3 6756 |
. . 3
⊢ ((◡𝐹:𝐵⟶𝐵 ∧ 𝑄 ∈ 𝐵) → ((𝐺 ∘ ◡𝐹)‘𝑄) = (𝐺‘(◡𝐹‘𝑄))) |
30 | 25, 28, 29 | syl2anc 587 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → ((𝐺 ∘ ◡𝐹)‘𝑄) = (𝐺‘(◡𝐹‘𝑄))) |
31 | 2, 3, 4, 7, 11 | ltrniotacnvval 38192 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (◡𝐹‘𝑄) = 𝑃) |
32 | 15, 17, 18, 31 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (◡𝐹‘𝑄) = 𝑃) |
33 | 32 | fveq2d 6667 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝐺‘(◡𝐹‘𝑄)) = (𝐺‘𝑃)) |
34 | | simp2r 1197 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
35 | 2, 3, 4, 7, 12 | ltrniotaval 38191 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑅) |
36 | 15, 17, 34, 35 | syl3anc 1368 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝐺‘𝑃) = 𝑅) |
37 | 33, 36 | eqtrd 2793 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝐺‘(◡𝐹‘𝑄)) = 𝑅) |
38 | 14, 30, 37 | 3eqtrd 2797 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝐺, ( I ↾ 𝑇)〉 = (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑔‘𝑄) = 𝑅) |