Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn9 Structured version   Visualization version   GIF version

Theorem cdlemn9 40710
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b 𝐡 = (Baseβ€˜πΎ)
cdlemn8.l ≀ = (leβ€˜πΎ)
cdlemn8.a 𝐴 = (Atomsβ€˜πΎ)
cdlemn8.h 𝐻 = (LHypβ€˜πΎ)
cdlemn8.p 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
cdlemn8.o 𝑂 = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
cdlemn8.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemn8.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
cdlemn8.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
cdlemn8.s + = (+gβ€˜π‘ˆ)
cdlemn8.f 𝐹 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)
cdlemn8.g 𝐺 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)
Assertion
Ref Expression
cdlemn9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (π‘”β€˜π‘„) = 𝑅)
Distinct variable groups:   ≀ ,β„Ž   𝐴,β„Ž   𝐡,β„Ž   β„Ž,𝐻   β„Ž,𝐾   𝑇,β„Ž   𝑃,β„Ž   𝑄,β„Ž   β„Ž,π‘Š   𝑅,β„Ž
Allowed substitution hints:   𝐴(𝑔,𝑠)   𝐡(𝑔,𝑠)   𝑃(𝑔,𝑠)   + (𝑔,β„Ž,𝑠)   𝑄(𝑔,𝑠)   𝑅(𝑔,𝑠)   𝑇(𝑔,𝑠)   π‘ˆ(𝑔,β„Ž,𝑠)   𝐸(𝑔,β„Ž,𝑠)   𝐹(𝑔,β„Ž,𝑠)   𝐺(𝑔,β„Ž,𝑠)   𝐻(𝑔,𝑠)   𝐾(𝑔,𝑠)   ≀ (𝑔,𝑠)   𝑂(𝑔,β„Ž,𝑠)   π‘Š(𝑔,𝑠)

Proof of Theorem cdlemn9
StepHypRef Expression
1 cdlemn8.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdlemn8.l . . . 4 ≀ = (leβ€˜πΎ)
3 cdlemn8.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
4 cdlemn8.h . . . 4 𝐻 = (LHypβ€˜πΎ)
5 cdlemn8.p . . . 4 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
6 cdlemn8.o . . . 4 𝑂 = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
7 cdlemn8.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
8 cdlemn8.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
9 cdlemn8.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
10 cdlemn8.s . . . 4 + = (+gβ€˜π‘ˆ)
11 cdlemn8.f . . . 4 𝐹 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)
12 cdlemn8.g . . . 4 𝐺 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemn8 40709 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ 𝑔 = (𝐺 ∘ ◑𝐹))
1413fveq1d 6904 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (π‘”β€˜π‘„) = ((𝐺 ∘ ◑𝐹)β€˜π‘„))
15 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
162, 3, 4, 5lhpocnel2 39524 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
17163ad2ant1 1130 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
18 simp2l 1196 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
192, 3, 4, 7, 11ltrniotacl 40084 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
2015, 17, 18, 19syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ 𝐹 ∈ 𝑇)
211, 4, 7ltrn1o 39629 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:𝐡–1-1-onto→𝐡)
2215, 20, 21syl2anc 582 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ 𝐹:𝐡–1-1-onto→𝐡)
23 f1ocnv 6856 . . . 4 (𝐹:𝐡–1-1-onto→𝐡 β†’ ◑𝐹:𝐡–1-1-onto→𝐡)
24 f1of 6844 . . . 4 (◑𝐹:𝐡–1-1-onto→𝐡 β†’ ◑𝐹:𝐡⟢𝐡)
2522, 23, 243syl 18 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ ◑𝐹:𝐡⟢𝐡)
26 simp2ll 1237 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ 𝑄 ∈ 𝐴)
271, 3atbase 38793 . . . 4 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
2826, 27syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ 𝑄 ∈ 𝐡)
29 fvco3 7002 . . 3 ((◑𝐹:𝐡⟢𝐡 ∧ 𝑄 ∈ 𝐡) β†’ ((𝐺 ∘ ◑𝐹)β€˜π‘„) = (πΊβ€˜(β—‘πΉβ€˜π‘„)))
3025, 28, 29syl2anc 582 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ ((𝐺 ∘ ◑𝐹)β€˜π‘„) = (πΊβ€˜(β—‘πΉβ€˜π‘„)))
312, 3, 4, 7, 11ltrniotacnvval 40087 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (β—‘πΉβ€˜π‘„) = 𝑃)
3215, 17, 18, 31syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (β—‘πΉβ€˜π‘„) = 𝑃)
3332fveq2d 6906 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (πΊβ€˜(β—‘πΉβ€˜π‘„)) = (πΊβ€˜π‘ƒ))
34 simp2r 1197 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
352, 3, 4, 7, 12ltrniotaval 40086 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (πΊβ€˜π‘ƒ) = 𝑅)
3615, 17, 34, 35syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (πΊβ€˜π‘ƒ) = 𝑅)
3733, 36eqtrd 2768 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (πΊβ€˜(β—‘πΉβ€˜π‘„)) = 𝑅)
3814, 30, 373eqtrd 2772 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ ⟨𝐺, ( I β†Ύ 𝑇)⟩ = (⟨(π‘ β€˜πΉ), π‘ βŸ© + βŸ¨π‘”, π‘‚βŸ©))) β†’ (π‘”β€˜π‘„) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βŸ¨cop 4638   class class class wbr 5152   ↦ cmpt 5235   I cid 5579  β—‘ccnv 5681   β†Ύ cres 5684   ∘ ccom 5686  βŸΆwf 6549  β€“1-1-ontoβ†’wf1o 6552  β€˜cfv 6553  β„©crio 7381  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  lecple 17247  occoc 17248  Atomscatm 38767  HLchlt 38854  LHypclh 39489  LTrncltrn 39606  TEndoctendo 40257  DVecHcdvh 40583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-riotaBAD 38457
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-undef 8285  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-llines 39003  df-lplanes 39004  df-lvols 39005  df-lines 39006  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493  df-laut 39494  df-ldil 39609  df-ltrn 39610  df-trl 39664  df-tendo 40260  df-edring 40262  df-dvech 40584
This theorem is referenced by:  cdlemn11pre  40715
  Copyright terms: Public domain W3C validator