Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn9 Structured version   Visualization version   GIF version

Theorem cdlemn9 41207
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b 𝐵 = (Base‘𝐾)
cdlemn8.l = (le‘𝐾)
cdlemn8.a 𝐴 = (Atoms‘𝐾)
cdlemn8.h 𝐻 = (LHyp‘𝐾)
cdlemn8.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn8.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
cdlemn8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn8.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemn8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
cdlemn8.s + = (+g𝑈)
cdlemn8.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn8.g 𝐺 = (𝑇 (𝑃) = 𝑅)
Assertion
Ref Expression
cdlemn9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑔𝑄) = 𝑅)
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑇,   𝑃,   𝑄,   ,𝑊   𝑅,
Allowed substitution hints:   𝐴(𝑔,𝑠)   𝐵(𝑔,𝑠)   𝑃(𝑔,𝑠)   + (𝑔,,𝑠)   𝑄(𝑔,𝑠)   𝑅(𝑔,𝑠)   𝑇(𝑔,𝑠)   𝑈(𝑔,,𝑠)   𝐸(𝑔,,𝑠)   𝐹(𝑔,,𝑠)   𝐺(𝑔,,𝑠)   𝐻(𝑔,𝑠)   𝐾(𝑔,𝑠)   (𝑔,𝑠)   𝑂(𝑔,,𝑠)   𝑊(𝑔,𝑠)

Proof of Theorem cdlemn9
StepHypRef Expression
1 cdlemn8.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemn8.l . . . 4 = (le‘𝐾)
3 cdlemn8.a . . . 4 𝐴 = (Atoms‘𝐾)
4 cdlemn8.h . . . 4 𝐻 = (LHyp‘𝐾)
5 cdlemn8.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
6 cdlemn8.o . . . 4 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
7 cdlemn8.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemn8.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 cdlemn8.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 cdlemn8.s . . . 4 + = (+g𝑈)
11 cdlemn8.f . . . 4 𝐹 = (𝑇 (𝑃) = 𝑄)
12 cdlemn8.g . . . 4 𝐺 = (𝑇 (𝑃) = 𝑅)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemn8 41206 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝑔 = (𝐺𝐹))
1413fveq1d 6908 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑔𝑄) = ((𝐺𝐹)‘𝑄))
15 simp1 1137 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
162, 3, 4, 5lhpocnel2 40021 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
17163ad2ant1 1134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
18 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
192, 3, 4, 7, 11ltrniotacl 40581 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
2015, 17, 18, 19syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝐹𝑇)
211, 4, 7ltrn1o 40126 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
2215, 20, 21syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝐹:𝐵1-1-onto𝐵)
23 f1ocnv 6860 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵)
24 f1of 6848 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
2522, 23, 243syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝐹:𝐵𝐵)
26 simp2ll 1241 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝑄𝐴)
271, 3atbase 39290 . . . 4 (𝑄𝐴𝑄𝐵)
2826, 27syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → 𝑄𝐵)
29 fvco3 7008 . . 3 ((𝐹:𝐵𝐵𝑄𝐵) → ((𝐺𝐹)‘𝑄) = (𝐺‘(𝐹𝑄)))
3025, 28, 29syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → ((𝐺𝐹)‘𝑄) = (𝐺‘(𝐹𝑄)))
312, 3, 4, 7, 11ltrniotacnvval 40584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑄) = 𝑃)
3215, 17, 18, 31syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐹𝑄) = 𝑃)
3332fveq2d 6910 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐺‘(𝐹𝑄)) = (𝐺𝑃))
34 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
352, 3, 4, 7, 12ltrniotaval 40583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
3615, 17, 34, 35syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐺𝑃) = 𝑅)
3733, 36eqtrd 2777 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝐺‘(𝐹𝑄)) = 𝑅)
3814, 30, 373eqtrd 2781 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩))) → (𝑔𝑄) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cop 4632   class class class wbr 5143  cmpt 5225   I cid 5577  ccnv 5684  cres 5687  ccom 5689  wf 6557  1-1-ontowf1o 6560  cfv 6561  crio 7387  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  lecple 17304  occoc 17305  Atomscatm 39264  HLchlt 39351  LHypclh 39986  LTrncltrn 40103  TEndoctendo 40754  DVecHcdvh 41080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tendo 40757  df-edring 40759  df-dvech 41081
This theorem is referenced by:  cdlemn11pre  41212
  Copyright terms: Public domain W3C validator