Proof of Theorem cdleme0ex1N
Step | Hyp | Ref
| Expression |
1 | | simp1 1137 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp2l 1200 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | simp2r 1201 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) |
4 | | simp3 1139 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) |
5 | | cdleme0.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
6 | | cdleme0.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
7 | | cdleme0.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
8 | | cdleme0.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
9 | | cdleme0.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
10 | | cdleme0.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
11 | 5, 6, 7, 8, 9, 10 | lhpat2 37682 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
12 | 1, 2, 3, 4, 11 | syl112anc 1375 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑈 ∈ 𝐴) |
13 | | simp2ll 1241 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) |
14 | 5, 6, 7, 8, 9, 10 | cdlemeulpq 37857 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
15 | 1, 13, 3, 14 | syl12anc 836 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
16 | | simp1l 1198 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) |
17 | 16 | hllatd 37001 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) |
18 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
19 | 18, 6, 8 | hlatjcl 37004 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
20 | 16, 13, 3, 19 | syl3anc 1372 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
21 | | simp1r 1199 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ 𝐻) |
22 | 18, 9 | lhpbase 37635 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
23 | 21, 22 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ (Base‘𝐾)) |
24 | 18, 5, 7 | latmle2 17803 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
25 | 17, 20, 23, 24 | syl3anc 1372 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
26 | 10, 25 | eqbrtrid 5065 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑈 ≤ 𝑊) |
27 | | breq1 5033 |
. . . 4
⊢ (𝑢 = 𝑈 → (𝑢 ≤ (𝑃 ∨ 𝑄) ↔ 𝑈 ≤ (𝑃 ∨ 𝑄))) |
28 | | breq1 5033 |
. . . 4
⊢ (𝑢 = 𝑈 → (𝑢 ≤ 𝑊 ↔ 𝑈 ≤ 𝑊)) |
29 | 27, 28 | anbi12d 634 |
. . 3
⊢ (𝑢 = 𝑈 → ((𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊) ↔ (𝑈 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ 𝑊))) |
30 | 29 | rspcev 3526 |
. 2
⊢ ((𝑈 ∈ 𝐴 ∧ (𝑈 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ 𝑊)) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊)) |
31 | 12, 15, 26, 30 | syl12anc 836 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊)) |