Proof of Theorem cdleme0ex1N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1137 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp2l 1200 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 3 |  | simp2r 1201 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | 
| 4 |  | simp3 1139 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | 
| 5 |  | cdleme0.l | . . . 4
⊢  ≤ =
(le‘𝐾) | 
| 6 |  | cdleme0.j | . . . 4
⊢  ∨ =
(join‘𝐾) | 
| 7 |  | cdleme0.m | . . . 4
⊢  ∧ =
(meet‘𝐾) | 
| 8 |  | cdleme0.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 |  | cdleme0.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 10 |  | cdleme0.u | . . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 11 | 5, 6, 7, 8, 9, 10 | lhpat2 40047 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) | 
| 12 | 1, 2, 3, 4, 11 | syl112anc 1376 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑈 ∈ 𝐴) | 
| 13 |  | simp2ll 1241 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | 
| 14 | 5, 6, 7, 8, 9, 10 | cdlemeulpq 40222 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) | 
| 15 | 1, 13, 3, 14 | syl12anc 837 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑈 ≤ (𝑃 ∨ 𝑄)) | 
| 16 |  | simp1l 1198 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) | 
| 17 | 16 | hllatd 39365 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) | 
| 18 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 19 | 18, 6, 8 | hlatjcl 39368 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 20 | 16, 13, 3, 19 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 21 |  | simp1r 1199 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ 𝐻) | 
| 22 | 18, 9 | lhpbase 40000 | . . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 23 | 21, 22 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ (Base‘𝐾)) | 
| 24 | 18, 5, 7 | latmle2 18510 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) | 
| 25 | 17, 20, 23, 24 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) | 
| 26 | 10, 25 | eqbrtrid 5178 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑈 ≤ 𝑊) | 
| 27 |  | breq1 5146 | . . . 4
⊢ (𝑢 = 𝑈 → (𝑢 ≤ (𝑃 ∨ 𝑄) ↔ 𝑈 ≤ (𝑃 ∨ 𝑄))) | 
| 28 |  | breq1 5146 | . . . 4
⊢ (𝑢 = 𝑈 → (𝑢 ≤ 𝑊 ↔ 𝑈 ≤ 𝑊)) | 
| 29 | 27, 28 | anbi12d 632 | . . 3
⊢ (𝑢 = 𝑈 → ((𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊) ↔ (𝑈 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ 𝑊))) | 
| 30 | 29 | rspcev 3622 | . 2
⊢ ((𝑈 ∈ 𝐴 ∧ (𝑈 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ 𝑊)) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊)) | 
| 31 | 12, 15, 26, 30 | syl12anc 837 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊)) |