MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem5 Structured version   Visualization version   GIF version

Theorem sylow3lem5 19561
Description: Lemma for sylow3 19563, second part. Reduce the group action of sylow3lem1 19557 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem5.a + = (+g𝐺)
sylow3lem5.d = (-g𝐺)
sylow3lem5.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem5.m = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
Assertion
Ref Expression
sylow3lem5 (𝜑 ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥, ,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧

Proof of Theorem sylow3lem5
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3lem5.k . . . . . 6 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
2 slwsubg 19540 . . . . . 6 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
31, 2syl 17 . . . . 5 (𝜑𝐾 ∈ (SubGrp‘𝐺))
4 sylow3.x . . . . . 6 𝑋 = (Base‘𝐺)
54subgss 19059 . . . . 5 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
63, 5syl 17 . . . 4 (𝜑𝐾𝑋)
7 ssid 3969 . . . 4 (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺)
8 resmpo 7509 . . . 4 ((𝐾𝑋 ∧ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺)) → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
96, 7, 8sylancl 586 . . 3 (𝜑 → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
10 sylow3lem5.m . . 3 = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
119, 10eqtr4di 2782 . 2 (𝜑 → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = )
12 sylow3.g . . . 4 (𝜑𝐺 ∈ Grp)
13 sylow3.xf . . . 4 (𝜑𝑋 ∈ Fin)
14 sylow3.p . . . 4 (𝜑𝑃 ∈ ℙ)
15 sylow3lem5.a . . . 4 + = (+g𝐺)
16 sylow3lem5.d . . . 4 = (-g𝐺)
17 oveq2 7395 . . . . . . . . 9 (𝑧 = 𝑐 → (𝑥 + 𝑧) = (𝑥 + 𝑐))
1817oveq1d 7402 . . . . . . . 8 (𝑧 = 𝑐 → ((𝑥 + 𝑧) 𝑥) = ((𝑥 + 𝑐) 𝑥))
1918cbvmptv 5211 . . . . . . 7 (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑐𝑦 ↦ ((𝑥 + 𝑐) 𝑥))
20 oveq1 7394 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 + 𝑐) = (𝑎 + 𝑐))
21 id 22 . . . . . . . . 9 (𝑥 = 𝑎𝑥 = 𝑎)
2220, 21oveq12d 7405 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥 + 𝑐) 𝑥) = ((𝑎 + 𝑐) 𝑎))
2322mpteq2dv 5201 . . . . . . 7 (𝑥 = 𝑎 → (𝑐𝑦 ↦ ((𝑥 + 𝑐) 𝑥)) = (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)))
2419, 23eqtrid 2776 . . . . . 6 (𝑥 = 𝑎 → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)))
2524rneqd 5902 . . . . 5 (𝑥 = 𝑎 → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)))
26 mpteq1 5196 . . . . . 6 (𝑦 = 𝑏 → (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)) = (𝑐𝑏 ↦ ((𝑎 + 𝑐) 𝑎)))
2726rneqd 5902 . . . . 5 (𝑦 = 𝑏 → ran (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)) = ran (𝑐𝑏 ↦ ((𝑎 + 𝑐) 𝑎)))
2825, 27cbvmpov 7484 . . . 4 (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎 + 𝑐) 𝑎)))
294, 12, 13, 14, 15, 16, 28sylow3lem1 19557 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
30 eqid 2729 . . . 4 (𝐺s 𝐾) = (𝐺s 𝐾)
3130gasubg 19234 . . 3 (((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
3229, 3, 31syl2anc 584 . 2 (𝜑 → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
3311, 32eqeltrrd 2829 1 (𝜑 ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  cmpt 5188   × cxp 5636  ran crn 5639  cres 5640  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  cprime 16641  Basecbs 17179  s cress 17200  +gcplusg 17220  Grpcgrp 18865  -gcsg 18867  SubGrpcsubg 19052   GrpAct cga 19221   pSyl cslw 19457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-eqg 19057  df-ghm 19145  df-ga 19222  df-od 19458  df-pgp 19460  df-slw 19461
This theorem is referenced by:  sylow3lem6  19562
  Copyright terms: Public domain W3C validator