| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylow3lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for sylow3 19553, second part. Reduce the group action of sylow3lem1 19547 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| sylow3.x | ⊢ 𝑋 = (Base‘𝐺) |
| sylow3.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| sylow3.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| sylow3.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| sylow3lem5.a | ⊢ + = (+g‘𝐺) |
| sylow3lem5.d | ⊢ − = (-g‘𝐺) |
| sylow3lem5.k | ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
| sylow3lem5.m | ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
| Ref | Expression |
|---|---|
| sylow3lem5 | ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow3lem5.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) | |
| 2 | slwsubg 19530 | . . . . . 6 ⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| 4 | sylow3.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | 4 | subgss 19048 | . . . . 5 ⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
| 7 | ssid 3953 | . . . 4 ⊢ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺) | |
| 8 | resmpo 7475 | . . . 4 ⊢ ((𝐾 ⊆ 𝑋 ∧ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) | |
| 9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) |
| 10 | sylow3lem5.m | . . 3 ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) | |
| 11 | 9, 10 | eqtr4di 2786 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = ⊕ ) |
| 12 | sylow3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 13 | sylow3.xf | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 14 | sylow3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 15 | sylow3lem5.a | . . . 4 ⊢ + = (+g‘𝐺) | |
| 16 | sylow3lem5.d | . . . 4 ⊢ − = (-g‘𝐺) | |
| 17 | oveq2 7363 | . . . . . . . . 9 ⊢ (𝑧 = 𝑐 → (𝑥 + 𝑧) = (𝑥 + 𝑐)) | |
| 18 | 17 | oveq1d 7370 | . . . . . . . 8 ⊢ (𝑧 = 𝑐 → ((𝑥 + 𝑧) − 𝑥) = ((𝑥 + 𝑐) − 𝑥)) |
| 19 | 18 | cbvmptv 5199 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑥 + 𝑐) − 𝑥)) |
| 20 | oveq1 7362 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝑥 + 𝑐) = (𝑎 + 𝑐)) | |
| 21 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → 𝑥 = 𝑎) | |
| 22 | 20, 21 | oveq12d 7373 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → ((𝑥 + 𝑐) − 𝑥) = ((𝑎 + 𝑐) − 𝑎)) |
| 23 | 22 | mpteq2dv 5189 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝑐 ∈ 𝑦 ↦ ((𝑥 + 𝑐) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
| 24 | 19, 23 | eqtrid 2780 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
| 25 | 24 | rneqd 5884 | . . . . 5 ⊢ (𝑥 = 𝑎 → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
| 26 | mpteq1 5184 | . . . . . 6 ⊢ (𝑦 = 𝑏 → (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎)) = (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) | |
| 27 | 26 | rneqd 5884 | . . . . 5 ⊢ (𝑦 = 𝑏 → ran (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎)) = ran (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) |
| 28 | 25, 27 | cbvmpov 7450 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) = (𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) |
| 29 | 4, 12, 13, 14, 15, 16, 28 | sylow3lem1 19547 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺))) |
| 30 | eqid 2733 | . . . 4 ⊢ (𝐺 ↾s 𝐾) = (𝐺 ↾s 𝐾) | |
| 31 | 30 | gasubg 19222 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
| 32 | 29, 3, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
| 33 | 11, 32 | eqeltrrd 2834 | 1 ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ↦ cmpt 5176 × cxp 5619 ran crn 5622 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Fincfn 8879 ℙcprime 16589 Basecbs 17127 ↾s cress 17148 +gcplusg 17168 Grpcgrp 18854 -gcsg 18856 SubGrpcsubg 19041 GrpAct cga 19209 pSyl cslw 19447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-dju 9805 df-card 9843 df-acn 9846 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-q 12853 df-rp 12897 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-fac 14188 df-bc 14217 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-sum 15601 df-dvds 16171 df-gcd 16413 df-prm 16590 df-pc 16756 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-eqg 19046 df-ghm 19133 df-ga 19210 df-od 19448 df-pgp 19450 df-slw 19451 |
| This theorem is referenced by: sylow3lem6 19552 |
| Copyright terms: Public domain | W3C validator |