![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylow3lem5 | Structured version Visualization version GIF version |
Description: Lemma for sylow3 19415, second part. Reduce the group action of sylow3lem1 19409 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
sylow3.x | ⊢ 𝑋 = (Base‘𝐺) |
sylow3.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
sylow3.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
sylow3.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
sylow3lem5.a | ⊢ + = (+g‘𝐺) |
sylow3lem5.d | ⊢ − = (-g‘𝐺) |
sylow3lem5.k | ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
sylow3lem5.m | ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
Ref | Expression |
---|---|
sylow3lem5 | ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow3lem5.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) | |
2 | slwsubg 19392 | . . . . . 6 ⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
4 | sylow3.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
5 | 4 | subgss 18929 | . . . . 5 ⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
7 | ssid 3966 | . . . 4 ⊢ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺) | |
8 | resmpo 7476 | . . . 4 ⊢ ((𝐾 ⊆ 𝑋 ∧ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) | |
9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) |
10 | sylow3lem5.m | . . 3 ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) | |
11 | 9, 10 | eqtr4di 2794 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = ⊕ ) |
12 | sylow3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
13 | sylow3.xf | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
14 | sylow3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
15 | sylow3lem5.a | . . . 4 ⊢ + = (+g‘𝐺) | |
16 | sylow3lem5.d | . . . 4 ⊢ − = (-g‘𝐺) | |
17 | oveq2 7365 | . . . . . . . . 9 ⊢ (𝑧 = 𝑐 → (𝑥 + 𝑧) = (𝑥 + 𝑐)) | |
18 | 17 | oveq1d 7372 | . . . . . . . 8 ⊢ (𝑧 = 𝑐 → ((𝑥 + 𝑧) − 𝑥) = ((𝑥 + 𝑐) − 𝑥)) |
19 | 18 | cbvmptv 5218 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑥 + 𝑐) − 𝑥)) |
20 | oveq1 7364 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝑥 + 𝑐) = (𝑎 + 𝑐)) | |
21 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → 𝑥 = 𝑎) | |
22 | 20, 21 | oveq12d 7375 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → ((𝑥 + 𝑐) − 𝑥) = ((𝑎 + 𝑐) − 𝑎)) |
23 | 22 | mpteq2dv 5207 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝑐 ∈ 𝑦 ↦ ((𝑥 + 𝑐) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
24 | 19, 23 | eqtrid 2788 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
25 | 24 | rneqd 5893 | . . . . 5 ⊢ (𝑥 = 𝑎 → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
26 | mpteq1 5198 | . . . . . 6 ⊢ (𝑦 = 𝑏 → (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎)) = (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) | |
27 | 26 | rneqd 5893 | . . . . 5 ⊢ (𝑦 = 𝑏 → ran (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎)) = ran (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) |
28 | 25, 27 | cbvmpov 7452 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) = (𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) |
29 | 4, 12, 13, 14, 15, 16, 28 | sylow3lem1 19409 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺))) |
30 | eqid 2736 | . . . 4 ⊢ (𝐺 ↾s 𝐾) = (𝐺 ↾s 𝐾) | |
31 | 30 | gasubg 19082 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
32 | 29, 3, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
33 | 11, 32 | eqeltrrd 2839 | 1 ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⊆ wss 3910 ↦ cmpt 5188 × cxp 5631 ran crn 5634 ↾ cres 5635 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 Fincfn 8883 ℙcprime 16547 Basecbs 17083 ↾s cress 17112 +gcplusg 17133 Grpcgrp 18748 -gcsg 18750 SubGrpcsubg 18922 GrpAct cga 19069 pSyl cslw 19309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-disj 5071 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-omul 8417 df-er 8648 df-ec 8650 df-qs 8654 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-acn 9878 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-xnn0 12486 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 df-dvds 16137 df-gcd 16375 df-prm 16548 df-pc 16709 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-eqg 18927 df-ghm 19006 df-ga 19070 df-od 19310 df-pgp 19312 df-slw 19313 |
This theorem is referenced by: sylow3lem6 19414 |
Copyright terms: Public domain | W3C validator |