Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylow3lem5 | Structured version Visualization version GIF version |
Description: Lemma for sylow3 19238, second part. Reduce the group action of sylow3lem1 19232 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
sylow3.x | ⊢ 𝑋 = (Base‘𝐺) |
sylow3.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
sylow3.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
sylow3.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
sylow3lem5.a | ⊢ + = (+g‘𝐺) |
sylow3lem5.d | ⊢ − = (-g‘𝐺) |
sylow3lem5.k | ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
sylow3lem5.m | ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
Ref | Expression |
---|---|
sylow3lem5 | ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow3lem5.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) | |
2 | slwsubg 19215 | . . . . . 6 ⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
4 | sylow3.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
5 | 4 | subgss 18756 | . . . . 5 ⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
7 | ssid 3943 | . . . 4 ⊢ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺) | |
8 | resmpo 7394 | . . . 4 ⊢ ((𝐾 ⊆ 𝑋 ∧ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) | |
9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) |
10 | sylow3lem5.m | . . 3 ⊢ ⊕ = (𝑥 ∈ 𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) | |
11 | 9, 10 | eqtr4di 2796 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = ⊕ ) |
12 | sylow3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
13 | sylow3.xf | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
14 | sylow3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
15 | sylow3lem5.a | . . . 4 ⊢ + = (+g‘𝐺) | |
16 | sylow3lem5.d | . . . 4 ⊢ − = (-g‘𝐺) | |
17 | oveq2 7283 | . . . . . . . . 9 ⊢ (𝑧 = 𝑐 → (𝑥 + 𝑧) = (𝑥 + 𝑐)) | |
18 | 17 | oveq1d 7290 | . . . . . . . 8 ⊢ (𝑧 = 𝑐 → ((𝑥 + 𝑧) − 𝑥) = ((𝑥 + 𝑐) − 𝑥)) |
19 | 18 | cbvmptv 5187 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑥 + 𝑐) − 𝑥)) |
20 | oveq1 7282 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝑥 + 𝑐) = (𝑎 + 𝑐)) | |
21 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → 𝑥 = 𝑎) | |
22 | 20, 21 | oveq12d 7293 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → ((𝑥 + 𝑐) − 𝑥) = ((𝑎 + 𝑐) − 𝑎)) |
23 | 22 | mpteq2dv 5176 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝑐 ∈ 𝑦 ↦ ((𝑥 + 𝑐) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
24 | 19, 23 | eqtrid 2790 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
25 | 24 | rneqd 5847 | . . . . 5 ⊢ (𝑥 = 𝑎 → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎))) |
26 | mpteq1 5167 | . . . . . 6 ⊢ (𝑦 = 𝑏 → (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎)) = (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) | |
27 | 26 | rneqd 5847 | . . . . 5 ⊢ (𝑦 = 𝑏 → ran (𝑐 ∈ 𝑦 ↦ ((𝑎 + 𝑐) − 𝑎)) = ran (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) |
28 | 25, 27 | cbvmpov 7370 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) = (𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎 + 𝑐) − 𝑎))) |
29 | 4, 12, 13, 14, 15, 16, 28 | sylow3lem1 19232 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺))) |
30 | eqid 2738 | . . . 4 ⊢ (𝐺 ↾s 𝐾) = (𝐺 ↾s 𝐾) | |
31 | 30 | gasubg 18908 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
32 | 29, 3, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
33 | 11, 32 | eqeltrrd 2840 | 1 ⊢ (𝜑 → ⊕ ∈ ((𝐺 ↾s 𝐾) GrpAct (𝑃 pSyl 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ↦ cmpt 5157 × cxp 5587 ran crn 5590 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Fincfn 8733 ℙcprime 16376 Basecbs 16912 ↾s cress 16941 +gcplusg 16962 Grpcgrp 18577 -gcsg 18579 SubGrpcsubg 18749 GrpAct cga 18895 pSyl cslw 19135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-dvds 15964 df-gcd 16202 df-prm 16377 df-pc 16538 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-eqg 18754 df-ghm 18832 df-ga 18896 df-od 19136 df-pgp 19138 df-slw 19139 |
This theorem is referenced by: sylow3lem6 19237 |
Copyright terms: Public domain | W3C validator |