MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem5 Structured version   Visualization version   GIF version

Theorem sylow3lem5 18734
Description: Lemma for sylow3 18736, second part. Reduce the group action of sylow3lem1 18730 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem5.a + = (+g𝐺)
sylow3lem5.d = (-g𝐺)
sylow3lem5.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem5.m = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
Assertion
Ref Expression
sylow3lem5 (𝜑 ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥, ,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧

Proof of Theorem sylow3lem5
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3lem5.k . . . . . 6 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
2 slwsubg 18713 . . . . . 6 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
31, 2syl 17 . . . . 5 (𝜑𝐾 ∈ (SubGrp‘𝐺))
4 sylow3.x . . . . . 6 𝑋 = (Base‘𝐺)
54subgss 18258 . . . . 5 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
63, 5syl 17 . . . 4 (𝜑𝐾𝑋)
7 ssid 3965 . . . 4 (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺)
8 resmpo 7246 . . . 4 ((𝐾𝑋 ∧ (𝑃 pSyl 𝐺) ⊆ (𝑃 pSyl 𝐺)) → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
96, 7, 8sylancl 589 . . 3 (𝜑 → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
10 sylow3lem5.m . . 3 = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
119, 10syl6eqr 2874 . 2 (𝜑 → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) = )
12 sylow3.g . . . 4 (𝜑𝐺 ∈ Grp)
13 sylow3.xf . . . 4 (𝜑𝑋 ∈ Fin)
14 sylow3.p . . . 4 (𝜑𝑃 ∈ ℙ)
15 sylow3lem5.a . . . 4 + = (+g𝐺)
16 sylow3lem5.d . . . 4 = (-g𝐺)
17 oveq2 7138 . . . . . . . . 9 (𝑧 = 𝑐 → (𝑥 + 𝑧) = (𝑥 + 𝑐))
1817oveq1d 7145 . . . . . . . 8 (𝑧 = 𝑐 → ((𝑥 + 𝑧) 𝑥) = ((𝑥 + 𝑐) 𝑥))
1918cbvmptv 5142 . . . . . . 7 (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑐𝑦 ↦ ((𝑥 + 𝑐) 𝑥))
20 oveq1 7137 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 + 𝑐) = (𝑎 + 𝑐))
21 id 22 . . . . . . . . 9 (𝑥 = 𝑎𝑥 = 𝑎)
2220, 21oveq12d 7148 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥 + 𝑐) 𝑥) = ((𝑎 + 𝑐) 𝑎))
2322mpteq2dv 5135 . . . . . . 7 (𝑥 = 𝑎 → (𝑐𝑦 ↦ ((𝑥 + 𝑐) 𝑥)) = (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)))
2419, 23syl5eq 2868 . . . . . 6 (𝑥 = 𝑎 → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)))
2524rneqd 5781 . . . . 5 (𝑥 = 𝑎 → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)))
26 mpteq1 5127 . . . . . 6 (𝑦 = 𝑏 → (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)) = (𝑐𝑏 ↦ ((𝑎 + 𝑐) 𝑎)))
2726rneqd 5781 . . . . 5 (𝑦 = 𝑏 → ran (𝑐𝑦 ↦ ((𝑎 + 𝑐) 𝑎)) = ran (𝑐𝑏 ↦ ((𝑎 + 𝑐) 𝑎)))
2825, 27cbvmpov 7223 . . . 4 (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎 + 𝑐) 𝑎)))
294, 12, 13, 14, 15, 16, 28sylow3lem1 18730 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
30 eqid 2821 . . . 4 (𝐺s 𝐾) = (𝐺s 𝐾)
3130gasubg 18410 . . 3 (((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
3229, 3, 31syl2anc 587 . 2 (𝜑 → ((𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↾ (𝐾 × (𝑃 pSyl 𝐺))) ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
3311, 32eqeltrrd 2913 1 (𝜑 ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  wss 3910  cmpt 5119   × cxp 5526  ran crn 5529  cres 5530  cfv 6328  (class class class)co 7130  cmpo 7132  Fincfn 8484  cprime 15992  Basecbs 16461  s cress 16462  +gcplusg 16543  Grpcgrp 18081  -gcsg 18083  SubGrpcsubg 18251   GrpAct cga 18397   pSyl cslw 18633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-omul 8082  df-er 8264  df-ec 8266  df-qs 8270  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-inf 8883  df-oi 8950  df-dju 9306  df-card 9344  df-acn 9347  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-q 12327  df-rp 12368  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-bc 13647  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-sum 15022  df-dvds 15587  df-gcd 15821  df-prm 15993  df-pc 16151  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-grp 18084  df-minusg 18085  df-sbg 18086  df-mulg 18203  df-subg 18254  df-eqg 18256  df-ghm 18334  df-ga 18398  df-od 18634  df-pgp 18636  df-slw 18637
This theorem is referenced by:  sylow3lem6  18735
  Copyright terms: Public domain W3C validator