Step | Hyp | Ref
| Expression |
1 | | sylow3.g |
. . 3
β’ (π β πΊ β Grp) |
2 | | ovex 7438 |
. . 3
β’ (π pSyl πΊ) β V |
3 | 1, 2 | jctir 521 |
. 2
β’ (π β (πΊ β Grp β§ (π pSyl πΊ) β V)) |
4 | | sylow3.xf |
. . . . . . . . . . 11
β’ (π β π β Fin) |
5 | | sylow3.p |
. . . . . . . . . . 11
β’ (π β π β β) |
6 | | sylow3.x |
. . . . . . . . . . . 12
β’ π = (BaseβπΊ) |
7 | 6 | fislw 19487 |
. . . . . . . . . . 11
β’ ((πΊ β Grp β§ π β Fin β§ π β β) β (π¦ β (π pSyl πΊ) β (π¦ β (SubGrpβπΊ) β§ (β―βπ¦) = (πβ(π pCnt (β―βπ)))))) |
8 | 1, 4, 5, 7 | syl3anc 1371 |
. . . . . . . . . 10
β’ (π β (π¦ β (π pSyl πΊ) β (π¦ β (SubGrpβπΊ) β§ (β―βπ¦) = (πβ(π pCnt (β―βπ)))))) |
9 | 8 | biimpa 477 |
. . . . . . . . 9
β’ ((π β§ π¦ β (π pSyl πΊ)) β (π¦ β (SubGrpβπΊ) β§ (β―βπ¦) = (πβ(π pCnt (β―βπ))))) |
10 | 9 | adantrl 714 |
. . . . . . . 8
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β (π¦ β (SubGrpβπΊ) β§ (β―βπ¦) = (πβ(π pCnt (β―βπ))))) |
11 | 10 | simpld 495 |
. . . . . . 7
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β π¦ β (SubGrpβπΊ)) |
12 | | simprl 769 |
. . . . . . 7
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β π₯ β π) |
13 | | sylow3lem1.a |
. . . . . . . 8
β’ + =
(+gβπΊ) |
14 | | sylow3lem1.d |
. . . . . . . 8
β’ β =
(-gβπΊ) |
15 | | eqid 2732 |
. . . . . . . 8
β’ (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = (π§ β π¦ β¦ ((π₯ + π§) β π₯)) |
16 | 6, 13, 14, 15 | conjsubg 19118 |
. . . . . . 7
β’ ((π¦ β (SubGrpβπΊ) β§ π₯ β π) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (SubGrpβπΊ)) |
17 | 11, 12, 16 | syl2anc 584 |
. . . . . 6
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (SubGrpβπΊ)) |
18 | 6, 13, 14, 15 | conjsubgen 19119 |
. . . . . . . . 9
β’ ((π¦ β (SubGrpβπΊ) β§ π₯ β π) β π¦ β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯))) |
19 | 11, 12, 18 | syl2anc 584 |
. . . . . . . 8
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β π¦ β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯))) |
20 | 4 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β π β Fin) |
21 | 6 | subgss 19001 |
. . . . . . . . . . 11
β’ (π¦ β (SubGrpβπΊ) β π¦ β π) |
22 | 11, 21 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β π¦ β π) |
23 | 20, 22 | ssfid 9263 |
. . . . . . . . 9
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β π¦ β Fin) |
24 | 6 | subgss 19001 |
. . . . . . . . . . 11
β’ (ran
(π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (SubGrpβπΊ) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β π) |
25 | 17, 24 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β π) |
26 | 20, 25 | ssfid 9263 |
. . . . . . . . 9
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β Fin) |
27 | | hashen 14303 |
. . . . . . . . 9
β’ ((π¦ β Fin β§ ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β Fin) β ((β―βπ¦) = (β―βran (π§ β π¦ β¦ ((π₯ + π§) β π₯))) β π¦ β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)))) |
28 | 23, 26, 27 | syl2anc 584 |
. . . . . . . 8
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β ((β―βπ¦) = (β―βran (π§ β π¦ β¦ ((π₯ + π§) β π₯))) β π¦ β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)))) |
29 | 19, 28 | mpbird 256 |
. . . . . . 7
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β (β―βπ¦) = (β―βran (π§ β π¦ β¦ ((π₯ + π§) β π₯)))) |
30 | 10 | simprd 496 |
. . . . . . 7
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β (β―βπ¦) = (πβ(π pCnt (β―βπ)))) |
31 | 29, 30 | eqtr3d 2774 |
. . . . . 6
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β (β―βran (π§ β π¦ β¦ ((π₯ + π§) β π₯))) = (πβ(π pCnt (β―βπ)))) |
32 | 6 | fislw 19487 |
. . . . . . . 8
β’ ((πΊ β Grp β§ π β Fin β§ π β β) β (ran
(π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (π pSyl πΊ) β (ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (SubGrpβπΊ) β§ (β―βran (π§ β π¦ β¦ ((π₯ + π§) β π₯))) = (πβ(π pCnt (β―βπ)))))) |
33 | 1, 4, 5, 32 | syl3anc 1371 |
. . . . . . 7
β’ (π β (ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (π pSyl πΊ) β (ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (SubGrpβπΊ) β§ (β―βran (π§ β π¦ β¦ ((π₯ + π§) β π₯))) = (πβ(π pCnt (β―βπ)))))) |
34 | 33 | adantr 481 |
. . . . . 6
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β (ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (π pSyl πΊ) β (ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (SubGrpβπΊ) β§ (β―βran (π§ β π¦ β¦ ((π₯ + π§) β π₯))) = (πβ(π pCnt (β―βπ)))))) |
35 | 17, 31, 34 | mpbir2and 711 |
. . . . 5
β’ ((π β§ (π₯ β π β§ π¦ β (π pSyl πΊ))) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (π pSyl πΊ)) |
36 | 35 | ralrimivva 3200 |
. . . 4
β’ (π β βπ₯ β π βπ¦ β (π pSyl πΊ)ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (π pSyl πΊ)) |
37 | | sylow3lem1.m |
. . . . 5
β’ β =
(π₯ β π, π¦ β (π pSyl πΊ) β¦ ran (π§ β π¦ β¦ ((π₯ + π§) β π₯))) |
38 | 37 | fmpo 8050 |
. . . 4
β’
(βπ₯ β
π βπ¦ β (π pSyl πΊ)ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) β (π pSyl πΊ) β β :(π Γ (π pSyl πΊ))βΆ(π pSyl πΊ)) |
39 | 36, 38 | sylib 217 |
. . 3
β’ (π β β :(π Γ (π pSyl πΊ))βΆ(π pSyl πΊ)) |
40 | 1 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β (π pSyl πΊ)) β πΊ β Grp) |
41 | | eqid 2732 |
. . . . . . . . 9
β’
(0gβπΊ) = (0gβπΊ) |
42 | 6, 41 | grpidcl 18846 |
. . . . . . . 8
β’ (πΊ β Grp β
(0gβπΊ)
β π) |
43 | 40, 42 | syl 17 |
. . . . . . 7
β’ ((π β§ π β (π pSyl πΊ)) β (0gβπΊ) β π) |
44 | | simpr 485 |
. . . . . . 7
β’ ((π β§ π β (π pSyl πΊ)) β π β (π pSyl πΊ)) |
45 | | simpr 485 |
. . . . . . . . . 10
β’ ((π₯ = (0gβπΊ) β§ π¦ = π) β π¦ = π) |
46 | | simpl 483 |
. . . . . . . . . . . 12
β’ ((π₯ = (0gβπΊ) β§ π¦ = π) β π₯ = (0gβπΊ)) |
47 | 46 | oveq1d 7420 |
. . . . . . . . . . 11
β’ ((π₯ = (0gβπΊ) β§ π¦ = π) β (π₯ + π§) = ((0gβπΊ) + π§)) |
48 | 47, 46 | oveq12d 7423 |
. . . . . . . . . 10
β’ ((π₯ = (0gβπΊ) β§ π¦ = π) β ((π₯ + π§) β π₯) = (((0gβπΊ) + π§) β
(0gβπΊ))) |
49 | 45, 48 | mpteq12dv 5238 |
. . . . . . . . 9
β’ ((π₯ = (0gβπΊ) β§ π¦ = π) β (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = (π§ β π β¦ (((0gβπΊ) + π§) β
(0gβπΊ)))) |
50 | 49 | rneqd 5935 |
. . . . . . . 8
β’ ((π₯ = (0gβπΊ) β§ π¦ = π) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = ran (π§ β π β¦ (((0gβπΊ) + π§) β
(0gβπΊ)))) |
51 | | vex 3478 |
. . . . . . . . . 10
β’ π β V |
52 | 51 | mptex 7221 |
. . . . . . . . 9
β’ (π§ β π β¦ (((0gβπΊ) + π§) β
(0gβπΊ)))
β V |
53 | 52 | rnex 7899 |
. . . . . . . 8
β’ ran
(π§ β π β¦
(((0gβπΊ)
+ π§) β
(0gβπΊ)))
β V |
54 | 50, 37, 53 | ovmpoa 7559 |
. . . . . . 7
β’
(((0gβπΊ) β π β§ π β (π pSyl πΊ)) β ((0gβπΊ) β π) = ran (π§ β π β¦ (((0gβπΊ) + π§) β
(0gβπΊ)))) |
55 | 43, 44, 54 | syl2anc 584 |
. . . . . 6
β’ ((π β§ π β (π pSyl πΊ)) β ((0gβπΊ) β π) = ran (π§ β π β¦ (((0gβπΊ) + π§) β
(0gβπΊ)))) |
56 | 1 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (π pSyl πΊ)) β§ π§ β π) β πΊ β Grp) |
57 | | slwsubg 19472 |
. . . . . . . . . . . . . . . 16
β’ (π β (π pSyl πΊ) β π β (SubGrpβπΊ)) |
58 | 57 | adantl 482 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (π pSyl πΊ)) β π β (SubGrpβπΊ)) |
59 | 6 | subgss 19001 |
. . . . . . . . . . . . . . 15
β’ (π β (SubGrpβπΊ) β π β π) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β (π pSyl πΊ)) β π β π) |
61 | 60 | sselda 3981 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (π pSyl πΊ)) β§ π§ β π) β π§ β π) |
62 | 6, 13, 41 | grplid 18848 |
. . . . . . . . . . . . 13
β’ ((πΊ β Grp β§ π§ β π) β ((0gβπΊ) + π§) = π§) |
63 | 56, 61, 62 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π β§ π β (π pSyl πΊ)) β§ π§ β π) β ((0gβπΊ) + π§) = π§) |
64 | 63 | oveq1d 7420 |
. . . . . . . . . . 11
β’ (((π β§ π β (π pSyl πΊ)) β§ π§ β π) β (((0gβπΊ) + π§) β
(0gβπΊ)) =
(π§ β
(0gβπΊ))) |
65 | 6, 41, 14 | grpsubid1 18904 |
. . . . . . . . . . . 12
β’ ((πΊ β Grp β§ π§ β π) β (π§ β
(0gβπΊ)) =
π§) |
66 | 56, 61, 65 | syl2anc 584 |
. . . . . . . . . . 11
β’ (((π β§ π β (π pSyl πΊ)) β§ π§ β π) β (π§ β
(0gβπΊ)) =
π§) |
67 | 64, 66 | eqtrd 2772 |
. . . . . . . . . 10
β’ (((π β§ π β (π pSyl πΊ)) β§ π§ β π) β (((0gβπΊ) + π§) β
(0gβπΊ)) =
π§) |
68 | 67 | mpteq2dva 5247 |
. . . . . . . . 9
β’ ((π β§ π β (π pSyl πΊ)) β (π§ β π β¦ (((0gβπΊ) + π§) β
(0gβπΊ))) =
(π§ β π β¦ π§)) |
69 | | mptresid 6048 |
. . . . . . . . 9
β’ ( I
βΎ π) = (π§ β π β¦ π§) |
70 | 68, 69 | eqtr4di 2790 |
. . . . . . . 8
β’ ((π β§ π β (π pSyl πΊ)) β (π§ β π β¦ (((0gβπΊ) + π§) β
(0gβπΊ))) =
( I βΎ π)) |
71 | 70 | rneqd 5935 |
. . . . . . 7
β’ ((π β§ π β (π pSyl πΊ)) β ran (π§ β π β¦ (((0gβπΊ) + π§) β
(0gβπΊ))) =
ran ( I βΎ π)) |
72 | | rnresi 6071 |
. . . . . . 7
β’ ran ( I
βΎ π) = π |
73 | 71, 72 | eqtrdi 2788 |
. . . . . 6
β’ ((π β§ π β (π pSyl πΊ)) β ran (π§ β π β¦ (((0gβπΊ) + π§) β
(0gβπΊ))) =
π) |
74 | 55, 73 | eqtrd 2772 |
. . . . 5
β’ ((π β§ π β (π pSyl πΊ)) β ((0gβπΊ) β π) = π) |
75 | | ovex 7438 |
. . . . . . . . . 10
β’ ((π + π§) β π) β V |
76 | | oveq2 7413 |
. . . . . . . . . . 11
β’ (π€ = ((π + π§) β π) β (π + π€) = (π + ((π + π§) β π))) |
77 | 76 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π€ = ((π + π§) β π) β ((π + π€) β π) = ((π + ((π + π§) β π)) β π)) |
78 | 75, 77 | abrexco 7239 |
. . . . . . . . 9
β’ {π’ β£ βπ€ β {π£ β£ βπ§ β π π£ = ((π + π§) β π)}π’ = ((π + π€) β π)} = {π’ β£ βπ§ β π π’ = ((π + ((π + π§) β π)) β π)} |
79 | | simprr 771 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β π β π) |
80 | | simplr 767 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β π β (π pSyl πΊ)) |
81 | | simpr 485 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ = π β§ π¦ = π) β π¦ = π) |
82 | | simpl 483 |
. . . . . . . . . . . . . . . . . 18
β’ ((π₯ = π β§ π¦ = π) β π₯ = π) |
83 | 82 | oveq1d 7420 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ = π β§ π¦ = π) β (π₯ + π§) = (π + π§)) |
84 | 83, 82 | oveq12d 7423 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ = π β§ π¦ = π) β ((π₯ + π§) β π₯) = ((π + π§) β π)) |
85 | 81, 84 | mpteq12dv 5238 |
. . . . . . . . . . . . . . 15
β’ ((π₯ = π β§ π¦ = π) β (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = (π§ β π β¦ ((π + π§) β π))) |
86 | 85 | rneqd 5935 |
. . . . . . . . . . . . . 14
β’ ((π₯ = π β§ π¦ = π) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = ran (π§ β π β¦ ((π + π§) β π))) |
87 | 51 | mptex 7221 |
. . . . . . . . . . . . . . 15
β’ (π§ β π β¦ ((π + π§) β π)) β V |
88 | 87 | rnex 7899 |
. . . . . . . . . . . . . 14
β’ ran
(π§ β π β¦ ((π + π§) β π)) β V |
89 | 86, 37, 88 | ovmpoa 7559 |
. . . . . . . . . . . . 13
β’ ((π β π β§ π β (π pSyl πΊ)) β (π β π) = ran (π§ β π β¦ ((π + π§) β π))) |
90 | 79, 80, 89 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β (π β π) = ran (π§ β π β¦ ((π + π§) β π))) |
91 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ (π§ β π β¦ ((π + π§) β π)) = (π§ β π β¦ ((π + π§) β π)) |
92 | 91 | rnmpt 5952 |
. . . . . . . . . . . 12
β’ ran
(π§ β π β¦ ((π + π§) β π)) = {π£ β£ βπ§ β π π£ = ((π + π§) β π)} |
93 | 90, 92 | eqtrdi 2788 |
. . . . . . . . . . 11
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β (π β π) = {π£ β£ βπ§ β π π£ = ((π + π§) β π)}) |
94 | 93 | rexeqdv 3326 |
. . . . . . . . . 10
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β (βπ€ β (π β π)π’ = ((π + π€) β π) β βπ€ β {π£ β£ βπ§ β π π£ = ((π + π§) β π)}π’ = ((π + π€) β π))) |
95 | 94 | abbidv 2801 |
. . . . . . . . 9
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β {π’ β£ βπ€ β (π β π)π’ = ((π + π€) β π)} = {π’ β£ βπ€ β {π£ β£ βπ§ β π π£ = ((π + π§) β π)}π’ = ((π + π€) β π)}) |
96 | 40 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β πΊ β Grp) |
97 | 96 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β πΊ β Grp) |
98 | | simprl 769 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β π β π) |
99 | 6, 13 | grpcl 18823 |
. . . . . . . . . . . . . . . . 17
β’ ((πΊ β Grp β§ π β π β§ π β π) β (π + π) β π) |
100 | 96, 98, 79, 99 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β (π + π) β π) |
101 | 100 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β (π + π) β π) |
102 | 61 | adantlr 713 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β π§ β π) |
103 | 6, 13 | grpcl 18823 |
. . . . . . . . . . . . . . 15
β’ ((πΊ β Grp β§ (π + π) β π β§ π§ β π) β ((π + π) + π§) β π) |
104 | 97, 101, 102, 103 | syl3anc 1371 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β ((π + π) + π§) β π) |
105 | 79 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β π β π) |
106 | 98 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β π β π) |
107 | 6, 13, 14 | grpsubsub4 18912 |
. . . . . . . . . . . . . 14
β’ ((πΊ β Grp β§ (((π + π) + π§) β π β§ π β π β§ π β π)) β ((((π + π) + π§) β π) β π) = (((π + π) + π§) β (π + π))) |
108 | 97, 104, 105, 106, 107 | syl13anc 1372 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β ((((π + π) + π§) β π) β π) = (((π + π) + π§) β (π + π))) |
109 | 6, 13 | grpass 18824 |
. . . . . . . . . . . . . . . . 17
β’ ((πΊ β Grp β§ (π β π β§ π β π β§ π§ β π)) β ((π + π) + π§) = (π + (π + π§))) |
110 | 97, 106, 105, 102, 109 | syl13anc 1372 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β ((π + π) + π§) = (π + (π + π§))) |
111 | 110 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β (((π + π) + π§) β π) = ((π + (π + π§)) β π)) |
112 | 6, 13 | grpcl 18823 |
. . . . . . . . . . . . . . . . 17
β’ ((πΊ β Grp β§ π β π β§ π§ β π) β (π + π§) β π) |
113 | 97, 105, 102, 112 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β (π + π§) β π) |
114 | 6, 13, 14 | grpaddsubass 18909 |
. . . . . . . . . . . . . . . 16
β’ ((πΊ β Grp β§ (π β π β§ (π + π§) β π β§ π β π)) β ((π + (π + π§)) β π) = (π + ((π + π§) β π))) |
115 | 97, 106, 113, 105, 114 | syl13anc 1372 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β ((π + (π + π§)) β π) = (π + ((π + π§) β π))) |
116 | 111, 115 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β (((π + π) + π§) β π) = (π + ((π + π§) β π))) |
117 | 116 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β ((((π + π) + π§) β π) β π) = ((π + ((π + π§) β π)) β π)) |
118 | 108, 117 | eqtr3d 2774 |
. . . . . . . . . . . 12
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β (((π + π) + π§) β (π + π)) = ((π + ((π + π§) β π)) β π)) |
119 | 118 | eqeq2d 2743 |
. . . . . . . . . . 11
β’ ((((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β§ π§ β π) β (π’ = (((π + π) + π§) β (π + π)) β π’ = ((π + ((π + π§) β π)) β π))) |
120 | 119 | rexbidva 3176 |
. . . . . . . . . 10
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β (βπ§ β π π’ = (((π + π) + π§) β (π + π)) β βπ§ β π π’ = ((π + ((π + π§) β π)) β π))) |
121 | 120 | abbidv 2801 |
. . . . . . . . 9
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β {π’ β£ βπ§ β π π’ = (((π + π) + π§) β (π + π))} = {π’ β£ βπ§ β π π’ = ((π + ((π + π§) β π)) β π)}) |
122 | 78, 95, 121 | 3eqtr4a 2798 |
. . . . . . . 8
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β {π’ β£ βπ€ β (π β π)π’ = ((π + π€) β π)} = {π’ β£ βπ§ β π π’ = (((π + π) + π§) β (π + π))}) |
123 | | eqid 2732 |
. . . . . . . . 9
β’ (π€ β (π β π) β¦ ((π + π€) β π)) = (π€ β (π β π) β¦ ((π + π€) β π)) |
124 | 123 | rnmpt 5952 |
. . . . . . . 8
β’ ran
(π€ β (π β π) β¦ ((π + π€) β π)) = {π’ β£ βπ€ β (π β π)π’ = ((π + π€) β π)} |
125 | | eqid 2732 |
. . . . . . . . 9
β’ (π§ β π β¦ (((π + π) + π§) β (π + π))) = (π§ β π β¦ (((π + π) + π§) β (π + π))) |
126 | 125 | rnmpt 5952 |
. . . . . . . 8
β’ ran
(π§ β π β¦ (((π + π) + π§) β (π + π))) = {π’ β£ βπ§ β π π’ = (((π + π) + π§) β (π + π))} |
127 | 122, 124,
126 | 3eqtr4g 2797 |
. . . . . . 7
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β ran (π€ β (π β π) β¦ ((π + π€) β π)) = ran (π§ β π β¦ (((π + π) + π§) β (π + π)))) |
128 | 39 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β β :(π Γ (π pSyl πΊ))βΆ(π pSyl πΊ)) |
129 | 128, 79, 80 | fovcdmd 7575 |
. . . . . . . 8
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β (π β π) β (π pSyl πΊ)) |
130 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((π₯ = π β§ π¦ = (π β π)) β π¦ = (π β π)) |
131 | | simpl 483 |
. . . . . . . . . . . . . 14
β’ ((π₯ = π β§ π¦ = (π β π)) β π₯ = π) |
132 | 131 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ ((π₯ = π β§ π¦ = (π β π)) β (π₯ + π§) = (π + π§)) |
133 | 132, 131 | oveq12d 7423 |
. . . . . . . . . . . 12
β’ ((π₯ = π β§ π¦ = (π β π)) β ((π₯ + π§) β π₯) = ((π + π§) β π)) |
134 | 130, 133 | mpteq12dv 5238 |
. . . . . . . . . . 11
β’ ((π₯ = π β§ π¦ = (π β π)) β (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = (π§ β (π β π) β¦ ((π + π§) β π))) |
135 | | oveq2 7413 |
. . . . . . . . . . . . 13
β’ (π§ = π€ β (π + π§) = (π + π€)) |
136 | 135 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ (π§ = π€ β ((π + π§) β π) = ((π + π€) β π)) |
137 | 136 | cbvmptv 5260 |
. . . . . . . . . . 11
β’ (π§ β (π β π) β¦ ((π + π§) β π)) = (π€ β (π β π) β¦ ((π + π€) β π)) |
138 | 134, 137 | eqtrdi 2788 |
. . . . . . . . . 10
β’ ((π₯ = π β§ π¦ = (π β π)) β (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = (π€ β (π β π) β¦ ((π + π€) β π))) |
139 | 138 | rneqd 5935 |
. . . . . . . . 9
β’ ((π₯ = π β§ π¦ = (π β π)) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = ran (π€ β (π β π) β¦ ((π + π€) β π))) |
140 | | ovex 7438 |
. . . . . . . . . . 11
β’ (π β π) β V |
141 | 140 | mptex 7221 |
. . . . . . . . . 10
β’ (π€ β (π β π) β¦ ((π + π€) β π)) β V |
142 | 141 | rnex 7899 |
. . . . . . . . 9
β’ ran
(π€ β (π β π) β¦ ((π + π€) β π)) β V |
143 | 139, 37, 142 | ovmpoa 7559 |
. . . . . . . 8
β’ ((π β π β§ (π β π) β (π pSyl πΊ)) β (π β (π β π)) = ran (π€ β (π β π) β¦ ((π + π€) β π))) |
144 | 98, 129, 143 | syl2anc 584 |
. . . . . . 7
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β (π β (π β π)) = ran (π€ β (π β π) β¦ ((π + π€) β π))) |
145 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π₯ = (π + π) β§ π¦ = π) β π¦ = π) |
146 | | simpl 483 |
. . . . . . . . . . . . 13
β’ ((π₯ = (π + π) β§ π¦ = π) β π₯ = (π + π)) |
147 | 146 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ ((π₯ = (π + π) β§ π¦ = π) β (π₯ + π§) = ((π + π) + π§)) |
148 | 147, 146 | oveq12d 7423 |
. . . . . . . . . . 11
β’ ((π₯ = (π + π) β§ π¦ = π) β ((π₯ + π§) β π₯) = (((π + π) + π§) β (π + π))) |
149 | 145, 148 | mpteq12dv 5238 |
. . . . . . . . . 10
β’ ((π₯ = (π + π) β§ π¦ = π) β (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = (π§ β π β¦ (((π + π) + π§) β (π + π)))) |
150 | 149 | rneqd 5935 |
. . . . . . . . 9
β’ ((π₯ = (π + π) β§ π¦ = π) β ran (π§ β π¦ β¦ ((π₯ + π§) β π₯)) = ran (π§ β π β¦ (((π + π) + π§) β (π + π)))) |
151 | 51 | mptex 7221 |
. . . . . . . . . 10
β’ (π§ β π β¦ (((π + π) + π§) β (π + π))) β V |
152 | 151 | rnex 7899 |
. . . . . . . . 9
β’ ran
(π§ β π β¦ (((π + π) + π§) β (π + π))) β V |
153 | 150, 37, 152 | ovmpoa 7559 |
. . . . . . . 8
β’ (((π + π) β π β§ π β (π pSyl πΊ)) β ((π + π) β π) = ran (π§ β π β¦ (((π + π) + π§) β (π + π)))) |
154 | 100, 80, 153 | syl2anc 584 |
. . . . . . 7
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β ((π + π) β π) = ran (π§ β π β¦ (((π + π) + π§) β (π + π)))) |
155 | 127, 144,
154 | 3eqtr4rd 2783 |
. . . . . 6
β’ (((π β§ π β (π pSyl πΊ)) β§ (π β π β§ π β π)) β ((π + π) β π) = (π β (π β π))) |
156 | 155 | ralrimivva 3200 |
. . . . 5
β’ ((π β§ π β (π pSyl πΊ)) β βπ β π βπ β π ((π + π) β π) = (π β (π β π))) |
157 | 74, 156 | jca 512 |
. . . 4
β’ ((π β§ π β (π pSyl πΊ)) β (((0gβπΊ) β π) = π β§ βπ β π βπ β π ((π + π) β π) = (π β (π β π)))) |
158 | 157 | ralrimiva 3146 |
. . 3
β’ (π β βπ β (π pSyl πΊ)(((0gβπΊ) β π) = π β§ βπ β π βπ β π ((π + π) β π) = (π β (π β π)))) |
159 | 39, 158 | jca 512 |
. 2
β’ (π β ( β :(π Γ (π pSyl πΊ))βΆ(π pSyl πΊ) β§ βπ β (π pSyl πΊ)(((0gβπΊ) β π) = π β§ βπ β π βπ β π ((π + π) β π) = (π β (π β π))))) |
160 | 6, 13, 41 | isga 19149 |
. 2
β’ ( β β
(πΊ GrpAct (π pSyl πΊ)) β ((πΊ β Grp β§ (π pSyl πΊ) β V) β§ ( β :(π Γ (π pSyl πΊ))βΆ(π pSyl πΊ) β§ βπ β (π pSyl πΊ)(((0gβπΊ) β π) = π β§ βπ β π βπ β π ((π + π) β π) = (π β (π β π)))))) |
161 | 3, 159, 160 | sylanbrc 583 |
1
β’ (π β β β (πΊ GrpAct (π pSyl πΊ))) |