MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem1 Structured version   Visualization version   GIF version

Theorem sylow3lem1 18744
Description: Lemma for sylow3 18750, first part. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
Assertion
Ref Expression
sylow3lem1 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥, ,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧

Proof of Theorem sylow3lem1
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . 3 (𝜑𝐺 ∈ Grp)
2 ovex 7168 . . 3 (𝑃 pSyl 𝐺) ∈ V
31, 2jctir 524 . 2 (𝜑 → (𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V))
4 sylow3.xf . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
5 sylow3.p . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
6 sylow3.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
76fislw 18742 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
81, 4, 5, 7syl3anc 1368 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
98biimpa 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑃 pSyl 𝐺)) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
109adantrl 715 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
1110simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ (SubGrp‘𝐺))
12 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑥𝑋)
13 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
14 sylow3lem1.d . . . . . . . 8 = (-g𝐺)
15 eqid 2798 . . . . . . . 8 (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))
166, 13, 14, 15conjsubg 18382 . . . . . . 7 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺))
1711, 12, 16syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺))
186, 13, 14, 15conjsubgen 18383 . . . . . . . . 9 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
1911, 12, 18syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
204adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑋 ∈ Fin)
216subgss 18272 . . . . . . . . . . 11 (𝑦 ∈ (SubGrp‘𝐺) → 𝑦𝑋)
2211, 21syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦𝑋)
2320, 22ssfid 8725 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ Fin)
246subgss 18272 . . . . . . . . . . 11 (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ⊆ 𝑋)
2517, 24syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ⊆ 𝑋)
2620, 25ssfid 8725 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ Fin)
27 hashen 13703 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ Fin) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
2823, 26, 27syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
2919, 28mpbird 260 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
3010simprd 499 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
3129, 30eqtr3d 2835 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
326fislw 18742 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
331, 4, 5, 32syl3anc 1368 . . . . . . 7 (𝜑 → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
3433adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
3517, 31, 34mpbir2and 712 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺))
3635ralrimivva 3156 . . . 4 (𝜑 → ∀𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺))
37 sylow3lem1.m . . . . 5 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
3837fmpo 7748 . . . 4 (∀𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
3936, 38sylib 221 . . 3 (𝜑 :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
401adantr 484 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp)
41 eqid 2798 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
426, 41grpidcl 18123 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
4340, 42syl 17 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (0g𝐺) ∈ 𝑋)
44 simpr 488 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (𝑃 pSyl 𝐺))
45 simpr 488 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
46 simpl 486 . . . . . . . . . . . 12 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑥 = (0g𝐺))
4746oveq1d 7150 . . . . . . . . . . 11 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((0g𝐺) + 𝑧))
4847, 46oveq12d 7153 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = (((0g𝐺) + 𝑧) (0g𝐺)))
4945, 48mpteq12dv 5115 . . . . . . . . 9 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
5049rneqd 5772 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
51 vex 3444 . . . . . . . . . 10 𝑎 ∈ V
5251mptex 6963 . . . . . . . . 9 (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) ∈ V
5352rnex 7599 . . . . . . . 8 ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) ∈ V
5450, 37, 53ovmpoa 7284 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
5543, 44, 54syl2anc 587 . . . . . 6 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
561ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
57 slwsubg 18727 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝑃 pSyl 𝐺) → 𝑎 ∈ (SubGrp‘𝐺))
5857adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (SubGrp‘𝐺))
596subgss 18272 . . . . . . . . . . . . . . 15 (𝑎 ∈ (SubGrp‘𝐺) → 𝑎𝑋)
6058, 59syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎𝑋)
6160sselda 3915 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → 𝑧𝑋)
626, 13, 41grplid 18125 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
6356, 61, 62syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → ((0g𝐺) + 𝑧) = 𝑧)
6463oveq1d 7150 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (((0g𝐺) + 𝑧) (0g𝐺)) = (𝑧 (0g𝐺)))
656, 41, 14grpsubid1 18176 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 (0g𝐺)) = 𝑧)
6656, 61, 65syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (𝑧 (0g𝐺)) = 𝑧)
6764, 66eqtrd 2833 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (((0g𝐺) + 𝑧) (0g𝐺)) = 𝑧)
6867mpteq2dva 5125 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = (𝑧𝑎𝑧))
69 mptresid 5885 . . . . . . . . 9 ( I ↾ 𝑎) = (𝑧𝑎𝑧)
7068, 69eqtr4di 2851 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = ( I ↾ 𝑎))
7170rneqd 5772 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = ran ( I ↾ 𝑎))
72 rnresi 5910 . . . . . . 7 ran ( I ↾ 𝑎) = 𝑎
7371, 72eqtrdi 2849 . . . . . 6 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = 𝑎)
7455, 73eqtrd 2833 . . . . 5 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = 𝑎)
75 ovex 7168 . . . . . . . . . 10 ((𝑐 + 𝑧) 𝑐) ∈ V
76 oveq2 7143 . . . . . . . . . . 11 (𝑤 = ((𝑐 + 𝑧) 𝑐) → (𝑏 + 𝑤) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
7776oveq1d 7150 . . . . . . . . . 10 (𝑤 = ((𝑐 + 𝑧) 𝑐) → ((𝑏 + 𝑤) 𝑏) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
7875, 77abrexco 6981 . . . . . . . . 9 {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)}
79 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
80 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑎 ∈ (𝑃 pSyl 𝐺))
81 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑦 = 𝑎)
82 simpl 486 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑥 = 𝑐)
8382oveq1d 7150 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑥 + 𝑧) = (𝑐 + 𝑧))
8483, 82oveq12d 7153 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = ((𝑐 + 𝑧) 𝑐))
8581, 84mpteq12dv 5115 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
8685rneqd 5772 . . . . . . . . . . . . . 14 ((𝑥 = 𝑐𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
8751mptex 6963 . . . . . . . . . . . . . . 15 (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) ∈ V
8887rnex 7599 . . . . . . . . . . . . . 14 ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) ∈ V
8986, 37, 88ovmpoa 7284 . . . . . . . . . . . . 13 ((𝑐𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
9079, 80, 89syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
91 eqid 2798 . . . . . . . . . . . . 13 (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) = (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐))
9291rnmpt 5791 . . . . . . . . . . . 12 ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}
9390, 92eqtrdi 2849 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)})
9493rexeqdv 3365 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏) ↔ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)))
9594abbidv 2862 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)})
9640adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝐺 ∈ Grp)
9796adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
98 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
996, 13grpcl 18103 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑐𝑋) → (𝑏 + 𝑐) ∈ 𝑋)
10096, 98, 79, 99syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 + 𝑐) ∈ 𝑋)
101100adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑏 + 𝑐) ∈ 𝑋)
10261adantlr 714 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑧𝑋)
1036, 13grpcl 18103 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑏 + 𝑐) ∈ 𝑋𝑧𝑋) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋)
10497, 101, 102, 103syl3anc 1368 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋)
10579adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑐𝑋)
10698adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑏𝑋)
1076, 13, 14grpsubsub4 18184 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((𝑏 + 𝑐) + 𝑧) ∈ 𝑋𝑐𝑋𝑏𝑋)) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
10897, 104, 105, 106, 107syl13anc 1369 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
1096, 13grpass 18104 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑧𝑋)) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
11097, 106, 105, 102, 109syl13anc 1369 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
111110oveq1d 7150 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) 𝑐) = ((𝑏 + (𝑐 + 𝑧)) 𝑐))
1126, 13grpcl 18103 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑐𝑋𝑧𝑋) → (𝑐 + 𝑧) ∈ 𝑋)
11397, 105, 102, 112syl3anc 1368 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑐 + 𝑧) ∈ 𝑋)
1146, 13, 14grpaddsubass 18181 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝑏𝑋 ∧ (𝑐 + 𝑧) ∈ 𝑋𝑐𝑋)) → ((𝑏 + (𝑐 + 𝑧)) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
11597, 106, 113, 105, 114syl13anc 1369 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + (𝑐 + 𝑧)) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
116111, 115eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
117116oveq1d 7150 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
118108, 117eqtr3d 2835 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
119118eqeq2d 2809 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) ↔ 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)))
120119rexbidva 3255 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) ↔ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)))
121120abbidv 2862 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)})
12278, 95, 1213eqtr4a 2859 . . . . . . . 8 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))})
123 eqid 2798 . . . . . . . . 9 (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏))
124123rnmpt 5791 . . . . . . . 8 ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)}
125 eqid 2798 . . . . . . . . 9 (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) = (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
126125rnmpt 5791 . . . . . . . 8 ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))}
127122, 124, 1263eqtr4g 2858 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
12839ad2antrr 725 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
129128, 79, 80fovrnd 7300 . . . . . . . 8 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) ∈ (𝑃 pSyl 𝐺))
130 simpr 488 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑦 = (𝑐 𝑎))
131 simpl 486 . . . . . . . . . . . . . 14 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑥 = 𝑏)
132131oveq1d 7150 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
133132, 131oveq12d 7153 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ((𝑥 + 𝑧) 𝑥) = ((𝑏 + 𝑧) 𝑏))
134130, 133mpteq12dv 5115 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑧) 𝑏)))
135 oveq2 7143 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑏 + 𝑧) = (𝑏 + 𝑤))
136135oveq1d 7150 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑏 + 𝑧) 𝑏) = ((𝑏 + 𝑤) 𝑏))
137136cbvmptv 5133 . . . . . . . . . . 11 (𝑧 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑧) 𝑏)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏))
138134, 137eqtrdi 2849 . . . . . . . . . 10 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
139138rneqd 5772 . . . . . . . . 9 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
140 ovex 7168 . . . . . . . . . . 11 (𝑐 𝑎) ∈ V
141140mptex 6963 . . . . . . . . . 10 (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) ∈ V
142141rnex 7599 . . . . . . . . 9 ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) ∈ V
143139, 37, 142ovmpoa 7284 . . . . . . . 8 ((𝑏𝑋 ∧ (𝑐 𝑎) ∈ (𝑃 pSyl 𝐺)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
14498, 129, 143syl2anc 587 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
145 simpr 488 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
146 simpl 486 . . . . . . . . . . . . 13 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑥 = (𝑏 + 𝑐))
147146oveq1d 7150 . . . . . . . . . . . 12 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((𝑏 + 𝑐) + 𝑧))
148147, 146oveq12d 7153 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
149145, 148mpteq12dv 5115 . . . . . . . . . 10 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
150149rneqd 5772 . . . . . . . . 9 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
15151mptex 6963 . . . . . . . . . 10 (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) ∈ V
152151rnex 7599 . . . . . . . . 9 ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) ∈ V
153150, 37, 152ovmpoa 7284 . . . . . . . 8 (((𝑏 + 𝑐) ∈ 𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
154100, 80, 153syl2anc 587 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
155127, 144, 1543eqtr4rd 2844 . . . . . 6 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
156155ralrimivva 3156 . . . . 5 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
15774, 156jca 515 . . . 4 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
158157ralrimiva 3149 . . 3 (𝜑 → ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
15939, 158jca 515 . 2 (𝜑 → ( :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))))
1606, 13, 41isga 18413 . 2 ( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ↔ ((𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V) ∧ ( :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))))
1613, 159, 160sylanbrc 586 1 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  Vcvv 3441  wss 3881   class class class wbr 5030  cmpt 5110   I cid 5424   × cxp 5517  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  cen 8489  Fincfn 8492  cexp 13425  chash 13686  cprime 16005   pCnt cpc 16163  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095  -gcsg 18097  SubGrpcsubg 18265   GrpAct cga 18411   pSyl cslw 18647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-eqg 18270  df-ghm 18348  df-ga 18412  df-od 18648  df-pgp 18650  df-slw 18651
This theorem is referenced by:  sylow3lem3  18746  sylow3lem5  18748
  Copyright terms: Public domain W3C validator