Step | Hyp | Ref
| Expression |
1 | | sylow3.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
2 | | ovex 7288 |
. . 3
⊢ (𝑃 pSyl 𝐺) ∈ V |
3 | 1, 2 | jctir 520 |
. 2
⊢ (𝜑 → (𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V)) |
4 | | sylow3.xf |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ Fin) |
5 | | sylow3.p |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℙ) |
6 | | sylow3.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝐺) |
7 | 6 | fislw 19145 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
8 | 1, 4, 5, 7 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
9 | 8 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺)) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
10 | 9 | adantrl 712 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
11 | 10 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ (SubGrp‘𝐺)) |
12 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑥 ∈ 𝑋) |
13 | | sylow3lem1.a |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
14 | | sylow3lem1.d |
. . . . . . . 8
⊢ − =
(-g‘𝐺) |
15 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) |
16 | 6, 13, 14, 15 | conjsubg 18781 |
. . . . . . 7
⊢ ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (SubGrp‘𝐺)) |
17 | 11, 12, 16 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (SubGrp‘𝐺)) |
18 | 6, 13, 14, 15 | conjsubgen 18782 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → 𝑦 ≈ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
19 | 11, 12, 18 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ≈ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
20 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑋 ∈ Fin) |
21 | 6 | subgss 18671 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (SubGrp‘𝐺) → 𝑦 ⊆ 𝑋) |
22 | 11, 21 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ⊆ 𝑋) |
23 | 20, 22 | ssfid 8971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ Fin) |
24 | 6 | subgss 18671 |
. . . . . . . . . . 11
⊢ (ran
(𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (SubGrp‘𝐺) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ⊆ 𝑋) |
25 | 17, 24 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ⊆ 𝑋) |
26 | 20, 25 | ssfid 8971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ Fin) |
27 | | hashen 13989 |
. . . . . . . . 9
⊢ ((𝑦 ∈ Fin ∧ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ Fin) → ((♯‘𝑦) = (♯‘ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↔ 𝑦 ≈ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) |
28 | 23, 26, 27 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → ((♯‘𝑦) = (♯‘ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) ↔ 𝑦 ≈ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) |
29 | 19, 28 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (♯‘ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)))) |
30 | 10 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
31 | 29, 30 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
32 | 6 | fislw 19145 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (ran
(𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
33 | 1, 4, 5, 32 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
34 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → (ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
35 | 17, 31, 34 | mpbir2and 709 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (𝑃 pSyl 𝐺)) |
36 | 35 | ralrimivva 3114 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (𝑃 pSyl 𝐺)) |
37 | | sylow3lem1.m |
. . . . 5
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
38 | 37 | fmpo 7881 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ ⊕ :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺)) |
39 | 36, 38 | sylib 217 |
. . 3
⊢ (𝜑 → ⊕ :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺)) |
40 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp) |
41 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
42 | 6, 41 | grpidcl 18522 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
43 | 40, 42 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → (0g‘𝐺) ∈ 𝑋) |
44 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (𝑃 pSyl 𝐺)) |
45 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎) |
46 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → 𝑥 = (0g‘𝐺)) |
47 | 46 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((0g‘𝐺) + 𝑧)) |
48 | 47, 46 | oveq12d 7273 |
. . . . . . . . . 10
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) − 𝑥) = (((0g‘𝐺) + 𝑧) −
(0g‘𝐺))) |
49 | 45, 48 | mpteq12dv 5161 |
. . . . . . . . 9
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑧 ∈ 𝑎 ↦ (((0g‘𝐺) + 𝑧) −
(0g‘𝐺)))) |
50 | 49 | rneqd 5836 |
. . . . . . . 8
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑧 ∈ 𝑎 ↦ (((0g‘𝐺) + 𝑧) −
(0g‘𝐺)))) |
51 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
52 | 51 | mptex 7081 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑎 ↦ (((0g‘𝐺) + 𝑧) −
(0g‘𝐺)))
∈ V |
53 | 52 | rnex 7733 |
. . . . . . . 8
⊢ ran
(𝑧 ∈ 𝑎 ↦
(((0g‘𝐺)
+ 𝑧) −
(0g‘𝐺)))
∈ V |
54 | 50, 37, 53 | ovmpoa 7406 |
. . . . . . 7
⊢
(((0g‘𝐺) ∈ 𝑋 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g‘𝐺) ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ (((0g‘𝐺) + 𝑧) −
(0g‘𝐺)))) |
55 | 43, 44, 54 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g‘𝐺) ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ (((0g‘𝐺) + 𝑧) −
(0g‘𝐺)))) |
56 | 1 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧 ∈ 𝑎) → 𝐺 ∈ Grp) |
57 | | slwsubg 19130 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (𝑃 pSyl 𝐺) → 𝑎 ∈ (SubGrp‘𝐺)) |
58 | 57 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (SubGrp‘𝐺)) |
59 | 6 | subgss 18671 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (SubGrp‘𝐺) → 𝑎 ⊆ 𝑋) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ⊆ 𝑋) |
61 | 60 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧 ∈ 𝑎) → 𝑧 ∈ 𝑋) |
62 | 6, 13, 41 | grplid 18524 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺) + 𝑧) = 𝑧) |
63 | 56, 61, 62 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧 ∈ 𝑎) → ((0g‘𝐺) + 𝑧) = 𝑧) |
64 | 63 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧 ∈ 𝑎) → (((0g‘𝐺) + 𝑧) −
(0g‘𝐺)) =
(𝑧 −
(0g‘𝐺))) |
65 | 6, 41, 14 | grpsubid1 18575 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (𝑧 −
(0g‘𝐺)) =
𝑧) |
66 | 56, 61, 65 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧 ∈ 𝑎) → (𝑧 −
(0g‘𝐺)) =
𝑧) |
67 | 64, 66 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧 ∈ 𝑎) → (((0g‘𝐺) + 𝑧) −
(0g‘𝐺)) =
𝑧) |
68 | 67 | mpteq2dva 5170 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧 ∈ 𝑎 ↦ (((0g‘𝐺) + 𝑧) −
(0g‘𝐺))) =
(𝑧 ∈ 𝑎 ↦ 𝑧)) |
69 | | mptresid 5947 |
. . . . . . . . 9
⊢ ( I
↾ 𝑎) = (𝑧 ∈ 𝑎 ↦ 𝑧) |
70 | 68, 69 | eqtr4di 2797 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧 ∈ 𝑎 ↦ (((0g‘𝐺) + 𝑧) −
(0g‘𝐺))) =
( I ↾ 𝑎)) |
71 | 70 | rneqd 5836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧 ∈ 𝑎 ↦ (((0g‘𝐺) + 𝑧) −
(0g‘𝐺))) =
ran ( I ↾ 𝑎)) |
72 | | rnresi 5972 |
. . . . . . 7
⊢ ran ( I
↾ 𝑎) = 𝑎 |
73 | 71, 72 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧 ∈ 𝑎 ↦ (((0g‘𝐺) + 𝑧) −
(0g‘𝐺))) =
𝑎) |
74 | 55, 73 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g‘𝐺) ⊕ 𝑎) = 𝑎) |
75 | | ovex 7288 |
. . . . . . . . . 10
⊢ ((𝑐 + 𝑧) − 𝑐) ∈ V |
76 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑤 = ((𝑐 + 𝑧) − 𝑐) → (𝑏 + 𝑤) = (𝑏 + ((𝑐 + 𝑧) − 𝑐))) |
77 | 76 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑤 = ((𝑐 + 𝑧) − 𝑐) → ((𝑏 + 𝑤) − 𝑏) = ((𝑏 + ((𝑐 + 𝑧) − 𝑐)) − 𝑏)) |
78 | 75, 77 | abrexco 7099 |
. . . . . . . . 9
⊢ {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = ((𝑐 + 𝑧) − 𝑐)}𝑢 = ((𝑏 + 𝑤) − 𝑏)} = {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) − 𝑐)) − 𝑏)} |
79 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑐 ∈ 𝑋) |
80 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑎 ∈ (𝑃 pSyl 𝐺)) |
81 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎) |
82 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → 𝑥 = 𝑐) |
83 | 82 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = (𝑐 + 𝑧)) |
84 | 83, 82 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) − 𝑥) = ((𝑐 + 𝑧) − 𝑐)) |
85 | 81, 84 | mpteq12dv 5161 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑧 ∈ 𝑎 ↦ ((𝑐 + 𝑧) − 𝑐))) |
86 | 85 | rneqd 5836 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑧 ∈ 𝑎 ↦ ((𝑐 + 𝑧) − 𝑐))) |
87 | 51 | mptex 7081 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑎 ↦ ((𝑐 + 𝑧) − 𝑐)) ∈ V |
88 | 87 | rnex 7733 |
. . . . . . . . . . . . . 14
⊢ ran
(𝑧 ∈ 𝑎 ↦ ((𝑐 + 𝑧) − 𝑐)) ∈ V |
89 | 86, 37, 88 | ovmpoa 7406 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑐 ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ ((𝑐 + 𝑧) − 𝑐))) |
90 | 79, 80, 89 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐 ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ ((𝑐 + 𝑧) − 𝑐))) |
91 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑎 ↦ ((𝑐 + 𝑧) − 𝑐)) = (𝑧 ∈ 𝑎 ↦ ((𝑐 + 𝑧) − 𝑐)) |
92 | 91 | rnmpt 5853 |
. . . . . . . . . . . 12
⊢ ran
(𝑧 ∈ 𝑎 ↦ ((𝑐 + 𝑧) − 𝑐)) = {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = ((𝑐 + 𝑧) − 𝑐)} |
93 | 90, 92 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐 ⊕ 𝑎) = {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = ((𝑐 + 𝑧) − 𝑐)}) |
94 | 93 | rexeqdv 3340 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (∃𝑤 ∈ (𝑐 ⊕ 𝑎)𝑢 = ((𝑏 + 𝑤) − 𝑏) ↔ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = ((𝑐 + 𝑧) − 𝑐)}𝑢 = ((𝑏 + 𝑤) − 𝑏))) |
95 | 94 | abbidv 2808 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 ⊕ 𝑎)𝑢 = ((𝑏 + 𝑤) − 𝑏)} = {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = ((𝑐 + 𝑧) − 𝑐)}𝑢 = ((𝑏 + 𝑤) − 𝑏)}) |
96 | 40 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐺 ∈ Grp) |
97 | 96 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → 𝐺 ∈ Grp) |
98 | | simprl 767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑏 ∈ 𝑋) |
99 | 6, 13 | grpcl 18500 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋) → (𝑏 + 𝑐) ∈ 𝑋) |
100 | 96, 98, 79, 99 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑏 + 𝑐) ∈ 𝑋) |
101 | 100 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → (𝑏 + 𝑐) ∈ 𝑋) |
102 | 61 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → 𝑧 ∈ 𝑋) |
103 | 6, 13 | grpcl 18500 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ (𝑏 + 𝑐) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋) |
104 | 97, 101, 102, 103 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋) |
105 | 79 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → 𝑐 ∈ 𝑋) |
106 | 98 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → 𝑏 ∈ 𝑋) |
107 | 6, 13, 14 | grpsubsub4 18583 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ (((𝑏 + 𝑐) + 𝑧) ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((((𝑏 + 𝑐) + 𝑧) − 𝑐) − 𝑏) = (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))) |
108 | 97, 104, 105, 106, 107 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → ((((𝑏 + 𝑐) + 𝑧) − 𝑐) − 𝑏) = (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))) |
109 | 6, 13 | grpass 18501 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧))) |
110 | 97, 106, 105, 102, 109 | syl13anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧))) |
111 | 110 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → (((𝑏 + 𝑐) + 𝑧) − 𝑐) = ((𝑏 + (𝑐 + 𝑧)) − 𝑐)) |
112 | 6, 13 | grpcl 18500 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝑐 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑐 + 𝑧) ∈ 𝑋) |
113 | 97, 105, 102, 112 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → (𝑐 + 𝑧) ∈ 𝑋) |
114 | 6, 13, 14 | grpaddsubass 18580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ (𝑏 ∈ 𝑋 ∧ (𝑐 + 𝑧) ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑏 + (𝑐 + 𝑧)) − 𝑐) = (𝑏 + ((𝑐 + 𝑧) − 𝑐))) |
115 | 97, 106, 113, 105, 114 | syl13anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → ((𝑏 + (𝑐 + 𝑧)) − 𝑐) = (𝑏 + ((𝑐 + 𝑧) − 𝑐))) |
116 | 111, 115 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → (((𝑏 + 𝑐) + 𝑧) − 𝑐) = (𝑏 + ((𝑐 + 𝑧) − 𝑐))) |
117 | 116 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → ((((𝑏 + 𝑐) + 𝑧) − 𝑐) − 𝑏) = ((𝑏 + ((𝑐 + 𝑧) − 𝑐)) − 𝑏)) |
118 | 108, 117 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐)) = ((𝑏 + ((𝑐 + 𝑧) − 𝑐)) − 𝑏)) |
119 | 118 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → (𝑢 = (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐)) ↔ 𝑢 = ((𝑏 + ((𝑐 + 𝑧) − 𝑐)) − 𝑏))) |
120 | 119 | rexbidva 3224 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (∃𝑧 ∈ 𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐)) ↔ ∃𝑧 ∈ 𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) − 𝑐)) − 𝑏))) |
121 | 120 | abbidv 2808 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))} = {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) − 𝑐)) − 𝑏)}) |
122 | 78, 95, 121 | 3eqtr4a 2805 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 ⊕ 𝑎)𝑢 = ((𝑏 + 𝑤) − 𝑏)} = {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))}) |
123 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏)) = (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏)) |
124 | 123 | rnmpt 5853 |
. . . . . . . 8
⊢ ran
(𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏)) = {𝑢 ∣ ∃𝑤 ∈ (𝑐 ⊕ 𝑎)𝑢 = ((𝑏 + 𝑤) − 𝑏)} |
125 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))) = (𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))) |
126 | 125 | rnmpt 5853 |
. . . . . . . 8
⊢ ran
(𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))) = {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))} |
127 | 122, 124,
126 | 3eqtr4g 2804 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ran (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏)) = ran (𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐)))) |
128 | 39 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ⊕ :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺)) |
129 | 128, 79, 80 | fovrnd 7422 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐 ⊕ 𝑎) ∈ (𝑃 pSyl 𝐺)) |
130 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → 𝑦 = (𝑐 ⊕ 𝑎)) |
131 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → 𝑥 = 𝑏) |
132 | 131 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → (𝑥 + 𝑧) = (𝑏 + 𝑧)) |
133 | 132, 131 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → ((𝑥 + 𝑧) − 𝑥) = ((𝑏 + 𝑧) − 𝑏)) |
134 | 130, 133 | mpteq12dv 5161 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑧 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑧) − 𝑏))) |
135 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑏 + 𝑧) = (𝑏 + 𝑤)) |
136 | 135 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝑏 + 𝑧) − 𝑏) = ((𝑏 + 𝑤) − 𝑏)) |
137 | 136 | cbvmptv 5183 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑧) − 𝑏)) = (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏)) |
138 | 134, 137 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏))) |
139 | 138 | rneqd 5836 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏))) |
140 | | ovex 7288 |
. . . . . . . . . . 11
⊢ (𝑐 ⊕ 𝑎) ∈ V |
141 | 140 | mptex 7081 |
. . . . . . . . . 10
⊢ (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏)) ∈ V |
142 | 141 | rnex 7733 |
. . . . . . . . 9
⊢ ran
(𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏)) ∈ V |
143 | 139, 37, 142 | ovmpoa 7406 |
. . . . . . . 8
⊢ ((𝑏 ∈ 𝑋 ∧ (𝑐 ⊕ 𝑎) ∈ (𝑃 pSyl 𝐺)) → (𝑏 ⊕ (𝑐 ⊕ 𝑎)) = ran (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏))) |
144 | 98, 129, 143 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑏 ⊕ (𝑐 ⊕ 𝑎)) = ran (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ ((𝑏 + 𝑤) − 𝑏))) |
145 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎) |
146 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑥 = (𝑏 + 𝑐)) |
147 | 146 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((𝑏 + 𝑐) + 𝑧)) |
148 | 147, 146 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) − 𝑥) = (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))) |
149 | 145, 148 | mpteq12dv 5161 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐)))) |
150 | 149 | rneqd 5836 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐)))) |
151 | 51 | mptex 7081 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))) ∈ V |
152 | 151 | rnex 7733 |
. . . . . . . . 9
⊢ ran
(𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐))) ∈ V |
153 | 150, 37, 152 | ovmpoa 7406 |
. . . . . . . 8
⊢ (((𝑏 + 𝑐) ∈ 𝑋 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → ((𝑏 + 𝑐) ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐)))) |
154 | 100, 80, 153 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑏 + 𝑐) ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) − (𝑏 + 𝑐)))) |
155 | 127, 144,
154 | 3eqtr4rd 2789 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎))) |
156 | 155 | ralrimivva 3114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎))) |
157 | 74, 156 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑃 pSyl 𝐺)) → (((0g‘𝐺) ⊕ 𝑎) = 𝑎 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎)))) |
158 | 157 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g‘𝐺) ⊕ 𝑎) = 𝑎 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎)))) |
159 | 39, 158 | jca 511 |
. 2
⊢ (𝜑 → ( ⊕ :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g‘𝐺) ⊕ 𝑎) = 𝑎 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎))))) |
160 | 6, 13, 41 | isga 18812 |
. 2
⊢ ( ⊕ ∈
(𝐺 GrpAct (𝑃 pSyl 𝐺)) ↔ ((𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V) ∧ ( ⊕ :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g‘𝐺) ⊕ 𝑎) = 𝑎 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎)))))) |
161 | 3, 159, 160 | sylanbrc 582 |
1
⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺))) |