MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem1 Structured version   Visualization version   GIF version

Theorem sylow3lem1 19547
Description: Lemma for sylow3 19553, first part. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
Assertion
Ref Expression
sylow3lem1 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥, ,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧

Proof of Theorem sylow3lem1
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . 3 (𝜑𝐺 ∈ Grp)
2 ovex 7388 . . 3 (𝑃 pSyl 𝐺) ∈ V
31, 2jctir 520 . 2 (𝜑 → (𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V))
4 sylow3.xf . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
5 sylow3.p . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
6 sylow3.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
76fislw 19545 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
81, 4, 5, 7syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
98biimpa 476 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑃 pSyl 𝐺)) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
109adantrl 716 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
1110simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ (SubGrp‘𝐺))
12 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑥𝑋)
13 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
14 sylow3lem1.d . . . . . . . 8 = (-g𝐺)
15 eqid 2733 . . . . . . . 8 (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))
166, 13, 14, 15conjsubg 19170 . . . . . . 7 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺))
1711, 12, 16syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺))
186, 13, 14, 15conjsubgen 19171 . . . . . . . . 9 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
1911, 12, 18syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
204adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑋 ∈ Fin)
216subgss 19048 . . . . . . . . . . 11 (𝑦 ∈ (SubGrp‘𝐺) → 𝑦𝑋)
2211, 21syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦𝑋)
2320, 22ssfid 9164 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ Fin)
246subgss 19048 . . . . . . . . . . 11 (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ⊆ 𝑋)
2517, 24syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ⊆ 𝑋)
2620, 25ssfid 9164 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ Fin)
27 hashen 14261 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ Fin) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
2823, 26, 27syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
2919, 28mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
3010simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
3129, 30eqtr3d 2770 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
326fislw 19545 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
331, 4, 5, 32syl3anc 1373 . . . . . . 7 (𝜑 → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
3517, 31, 34mpbir2and 713 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺))
3635ralrimivva 3176 . . . 4 (𝜑 → ∀𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺))
37 sylow3lem1.m . . . . 5 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
3837fmpo 8009 . . . 4 (∀𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
3936, 38sylib 218 . . 3 (𝜑 :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
401adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp)
41 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
426, 41grpidcl 18886 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
4340, 42syl 17 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (0g𝐺) ∈ 𝑋)
44 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (𝑃 pSyl 𝐺))
45 simpr 484 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
46 simpl 482 . . . . . . . . . . . 12 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑥 = (0g𝐺))
4746oveq1d 7370 . . . . . . . . . . 11 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((0g𝐺) + 𝑧))
4847, 46oveq12d 7373 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = (((0g𝐺) + 𝑧) (0g𝐺)))
4945, 48mpteq12dv 5182 . . . . . . . . 9 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
5049rneqd 5884 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
51 vex 3441 . . . . . . . . . 10 𝑎 ∈ V
5251mptex 7166 . . . . . . . . 9 (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) ∈ V
5352rnex 7849 . . . . . . . 8 ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) ∈ V
5450, 37, 53ovmpoa 7510 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
5543, 44, 54syl2anc 584 . . . . . 6 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
561ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
57 slwsubg 19530 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝑃 pSyl 𝐺) → 𝑎 ∈ (SubGrp‘𝐺))
5857adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (SubGrp‘𝐺))
596subgss 19048 . . . . . . . . . . . . . . 15 (𝑎 ∈ (SubGrp‘𝐺) → 𝑎𝑋)
6058, 59syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎𝑋)
6160sselda 3930 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → 𝑧𝑋)
626, 13, 41grplid 18888 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
6356, 61, 62syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → ((0g𝐺) + 𝑧) = 𝑧)
6463oveq1d 7370 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (((0g𝐺) + 𝑧) (0g𝐺)) = (𝑧 (0g𝐺)))
656, 41, 14grpsubid1 18946 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 (0g𝐺)) = 𝑧)
6656, 61, 65syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (𝑧 (0g𝐺)) = 𝑧)
6764, 66eqtrd 2768 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (((0g𝐺) + 𝑧) (0g𝐺)) = 𝑧)
6867mpteq2dva 5188 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = (𝑧𝑎𝑧))
69 mptresid 6007 . . . . . . . . 9 ( I ↾ 𝑎) = (𝑧𝑎𝑧)
7068, 69eqtr4di 2786 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = ( I ↾ 𝑎))
7170rneqd 5884 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = ran ( I ↾ 𝑎))
72 rnresi 6031 . . . . . . 7 ran ( I ↾ 𝑎) = 𝑎
7371, 72eqtrdi 2784 . . . . . 6 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = 𝑎)
7455, 73eqtrd 2768 . . . . 5 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = 𝑎)
75 ovex 7388 . . . . . . . . . 10 ((𝑐 + 𝑧) 𝑐) ∈ V
76 oveq2 7363 . . . . . . . . . . 11 (𝑤 = ((𝑐 + 𝑧) 𝑐) → (𝑏 + 𝑤) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
7776oveq1d 7370 . . . . . . . . . 10 (𝑤 = ((𝑐 + 𝑧) 𝑐) → ((𝑏 + 𝑤) 𝑏) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
7875, 77abrexco 7187 . . . . . . . . 9 {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)}
79 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
80 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑎 ∈ (𝑃 pSyl 𝐺))
81 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑦 = 𝑎)
82 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑥 = 𝑐)
8382oveq1d 7370 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑥 + 𝑧) = (𝑐 + 𝑧))
8483, 82oveq12d 7373 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = ((𝑐 + 𝑧) 𝑐))
8581, 84mpteq12dv 5182 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
8685rneqd 5884 . . . . . . . . . . . . . 14 ((𝑥 = 𝑐𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
8751mptex 7166 . . . . . . . . . . . . . . 15 (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) ∈ V
8887rnex 7849 . . . . . . . . . . . . . 14 ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) ∈ V
8986, 37, 88ovmpoa 7510 . . . . . . . . . . . . 13 ((𝑐𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
9079, 80, 89syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
91 eqid 2733 . . . . . . . . . . . . 13 (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) = (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐))
9291rnmpt 5903 . . . . . . . . . . . 12 ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}
9390, 92eqtrdi 2784 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)})
9493rexeqdv 3294 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏) ↔ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)))
9594abbidv 2799 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)})
9640adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝐺 ∈ Grp)
9796adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
98 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
996, 13grpcl 18862 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑐𝑋) → (𝑏 + 𝑐) ∈ 𝑋)
10096, 98, 79, 99syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 + 𝑐) ∈ 𝑋)
101100adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑏 + 𝑐) ∈ 𝑋)
10261adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑧𝑋)
1036, 13grpcl 18862 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑏 + 𝑐) ∈ 𝑋𝑧𝑋) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋)
10497, 101, 102, 103syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋)
10579adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑐𝑋)
10698adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑏𝑋)
1076, 13, 14grpsubsub4 18954 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((𝑏 + 𝑐) + 𝑧) ∈ 𝑋𝑐𝑋𝑏𝑋)) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
10897, 104, 105, 106, 107syl13anc 1374 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
1096, 13grpass 18863 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑧𝑋)) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
11097, 106, 105, 102, 109syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
111110oveq1d 7370 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) 𝑐) = ((𝑏 + (𝑐 + 𝑧)) 𝑐))
1126, 13grpcl 18862 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑐𝑋𝑧𝑋) → (𝑐 + 𝑧) ∈ 𝑋)
11397, 105, 102, 112syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑐 + 𝑧) ∈ 𝑋)
1146, 13, 14grpaddsubass 18951 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝑏𝑋 ∧ (𝑐 + 𝑧) ∈ 𝑋𝑐𝑋)) → ((𝑏 + (𝑐 + 𝑧)) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
11597, 106, 113, 105, 114syl13anc 1374 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + (𝑐 + 𝑧)) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
116111, 115eqtrd 2768 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
117116oveq1d 7370 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
118108, 117eqtr3d 2770 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
119118eqeq2d 2744 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) ↔ 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)))
120119rexbidva 3155 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) ↔ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)))
121120abbidv 2799 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)})
12278, 95, 1213eqtr4a 2794 . . . . . . . 8 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))})
123 eqid 2733 . . . . . . . . 9 (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏))
124123rnmpt 5903 . . . . . . . 8 ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)}
125 eqid 2733 . . . . . . . . 9 (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) = (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
126125rnmpt 5903 . . . . . . . 8 ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))}
127122, 124, 1263eqtr4g 2793 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
12839ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
129128, 79, 80fovcdmd 7527 . . . . . . . 8 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) ∈ (𝑃 pSyl 𝐺))
130 simpr 484 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑦 = (𝑐 𝑎))
131 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑥 = 𝑏)
132131oveq1d 7370 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
133132, 131oveq12d 7373 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ((𝑥 + 𝑧) 𝑥) = ((𝑏 + 𝑧) 𝑏))
134130, 133mpteq12dv 5182 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑧) 𝑏)))
135 oveq2 7363 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑏 + 𝑧) = (𝑏 + 𝑤))
136135oveq1d 7370 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑏 + 𝑧) 𝑏) = ((𝑏 + 𝑤) 𝑏))
137136cbvmptv 5199 . . . . . . . . . . 11 (𝑧 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑧) 𝑏)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏))
138134, 137eqtrdi 2784 . . . . . . . . . 10 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
139138rneqd 5884 . . . . . . . . 9 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
140 ovex 7388 . . . . . . . . . . 11 (𝑐 𝑎) ∈ V
141140mptex 7166 . . . . . . . . . 10 (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) ∈ V
142141rnex 7849 . . . . . . . . 9 ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) ∈ V
143139, 37, 142ovmpoa 7510 . . . . . . . 8 ((𝑏𝑋 ∧ (𝑐 𝑎) ∈ (𝑃 pSyl 𝐺)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
14498, 129, 143syl2anc 584 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
145 simpr 484 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
146 simpl 482 . . . . . . . . . . . . 13 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑥 = (𝑏 + 𝑐))
147146oveq1d 7370 . . . . . . . . . . . 12 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((𝑏 + 𝑐) + 𝑧))
148147, 146oveq12d 7373 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
149145, 148mpteq12dv 5182 . . . . . . . . . 10 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
150149rneqd 5884 . . . . . . . . 9 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
15151mptex 7166 . . . . . . . . . 10 (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) ∈ V
152151rnex 7849 . . . . . . . . 9 ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) ∈ V
153150, 37, 152ovmpoa 7510 . . . . . . . 8 (((𝑏 + 𝑐) ∈ 𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
154100, 80, 153syl2anc 584 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
155127, 144, 1543eqtr4rd 2779 . . . . . 6 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
156155ralrimivva 3176 . . . . 5 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
15774, 156jca 511 . . . 4 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
158157ralrimiva 3125 . . 3 (𝜑 → ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
15939, 158jca 511 . 2 (𝜑 → ( :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))))
1606, 13, 41isga 19211 . 2 ( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ↔ ((𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V) ∧ ( :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))))
1613, 159, 160sylanbrc 583 1 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176   I cid 5515   × cxp 5619  ran crn 5622  cres 5623  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  cen 8876  Fincfn 8879  cexp 13975  chash 14244  cprime 16589   pCnt cpc 16755  Basecbs 17127  +gcplusg 17168  0gc0g 17350  Grpcgrp 18854  -gcsg 18856  SubGrpcsubg 19041   GrpAct cga 19209   pSyl cslw 19447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-eqg 19046  df-ghm 19133  df-ga 19210  df-od 19448  df-pgp 19450  df-slw 19451
This theorem is referenced by:  sylow3lem3  19549  sylow3lem5  19551
  Copyright terms: Public domain W3C validator