MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem1 Structured version   Visualization version   GIF version

Theorem sylow3lem1 19645
Description: Lemma for sylow3 19651, first part. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
Assertion
Ref Expression
sylow3lem1 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥, ,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧

Proof of Theorem sylow3lem1
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . 3 (𝜑𝐺 ∈ Grp)
2 ovex 7464 . . 3 (𝑃 pSyl 𝐺) ∈ V
31, 2jctir 520 . 2 (𝜑 → (𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V))
4 sylow3.xf . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
5 sylow3.p . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
6 sylow3.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
76fislw 19643 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
81, 4, 5, 7syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
98biimpa 476 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑃 pSyl 𝐺)) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
109adantrl 716 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
1110simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ (SubGrp‘𝐺))
12 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑥𝑋)
13 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
14 sylow3lem1.d . . . . . . . 8 = (-g𝐺)
15 eqid 2737 . . . . . . . 8 (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))
166, 13, 14, 15conjsubg 19268 . . . . . . 7 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺))
1711, 12, 16syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺))
186, 13, 14, 15conjsubgen 19269 . . . . . . . . 9 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
1911, 12, 18syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
204adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑋 ∈ Fin)
216subgss 19145 . . . . . . . . . . 11 (𝑦 ∈ (SubGrp‘𝐺) → 𝑦𝑋)
2211, 21syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦𝑋)
2320, 22ssfid 9301 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ Fin)
246subgss 19145 . . . . . . . . . . 11 (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ⊆ 𝑋)
2517, 24syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ⊆ 𝑋)
2620, 25ssfid 9301 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ Fin)
27 hashen 14386 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ Fin) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
2823, 26, 27syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
2919, 28mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
3010simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
3129, 30eqtr3d 2779 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
326fislw 19643 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
331, 4, 5, 32syl3anc 1373 . . . . . . 7 (𝜑 → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
3517, 31, 34mpbir2and 713 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺))
3635ralrimivva 3202 . . . 4 (𝜑 → ∀𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺))
37 sylow3lem1.m . . . . 5 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
3837fmpo 8093 . . . 4 (∀𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
3936, 38sylib 218 . . 3 (𝜑 :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
401adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp)
41 eqid 2737 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
426, 41grpidcl 18983 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
4340, 42syl 17 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (0g𝐺) ∈ 𝑋)
44 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (𝑃 pSyl 𝐺))
45 simpr 484 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
46 simpl 482 . . . . . . . . . . . 12 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑥 = (0g𝐺))
4746oveq1d 7446 . . . . . . . . . . 11 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((0g𝐺) + 𝑧))
4847, 46oveq12d 7449 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = (((0g𝐺) + 𝑧) (0g𝐺)))
4945, 48mpteq12dv 5233 . . . . . . . . 9 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
5049rneqd 5949 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
51 vex 3484 . . . . . . . . . 10 𝑎 ∈ V
5251mptex 7243 . . . . . . . . 9 (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) ∈ V
5352rnex 7932 . . . . . . . 8 ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) ∈ V
5450, 37, 53ovmpoa 7588 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
5543, 44, 54syl2anc 584 . . . . . 6 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
561ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
57 slwsubg 19628 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝑃 pSyl 𝐺) → 𝑎 ∈ (SubGrp‘𝐺))
5857adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (SubGrp‘𝐺))
596subgss 19145 . . . . . . . . . . . . . . 15 (𝑎 ∈ (SubGrp‘𝐺) → 𝑎𝑋)
6058, 59syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎𝑋)
6160sselda 3983 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → 𝑧𝑋)
626, 13, 41grplid 18985 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
6356, 61, 62syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → ((0g𝐺) + 𝑧) = 𝑧)
6463oveq1d 7446 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (((0g𝐺) + 𝑧) (0g𝐺)) = (𝑧 (0g𝐺)))
656, 41, 14grpsubid1 19043 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 (0g𝐺)) = 𝑧)
6656, 61, 65syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (𝑧 (0g𝐺)) = 𝑧)
6764, 66eqtrd 2777 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (((0g𝐺) + 𝑧) (0g𝐺)) = 𝑧)
6867mpteq2dva 5242 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = (𝑧𝑎𝑧))
69 mptresid 6069 . . . . . . . . 9 ( I ↾ 𝑎) = (𝑧𝑎𝑧)
7068, 69eqtr4di 2795 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = ( I ↾ 𝑎))
7170rneqd 5949 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = ran ( I ↾ 𝑎))
72 rnresi 6093 . . . . . . 7 ran ( I ↾ 𝑎) = 𝑎
7371, 72eqtrdi 2793 . . . . . 6 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = 𝑎)
7455, 73eqtrd 2777 . . . . 5 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = 𝑎)
75 ovex 7464 . . . . . . . . . 10 ((𝑐 + 𝑧) 𝑐) ∈ V
76 oveq2 7439 . . . . . . . . . . 11 (𝑤 = ((𝑐 + 𝑧) 𝑐) → (𝑏 + 𝑤) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
7776oveq1d 7446 . . . . . . . . . 10 (𝑤 = ((𝑐 + 𝑧) 𝑐) → ((𝑏 + 𝑤) 𝑏) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
7875, 77abrexco 7264 . . . . . . . . 9 {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)}
79 simprr 773 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
80 simplr 769 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑎 ∈ (𝑃 pSyl 𝐺))
81 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑦 = 𝑎)
82 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑥 = 𝑐)
8382oveq1d 7446 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑥 + 𝑧) = (𝑐 + 𝑧))
8483, 82oveq12d 7449 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = ((𝑐 + 𝑧) 𝑐))
8581, 84mpteq12dv 5233 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
8685rneqd 5949 . . . . . . . . . . . . . 14 ((𝑥 = 𝑐𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
8751mptex 7243 . . . . . . . . . . . . . . 15 (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) ∈ V
8887rnex 7932 . . . . . . . . . . . . . 14 ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) ∈ V
8986, 37, 88ovmpoa 7588 . . . . . . . . . . . . 13 ((𝑐𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
9079, 80, 89syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
91 eqid 2737 . . . . . . . . . . . . 13 (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) = (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐))
9291rnmpt 5968 . . . . . . . . . . . 12 ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}
9390, 92eqtrdi 2793 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)})
9493rexeqdv 3327 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏) ↔ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)))
9594abbidv 2808 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)})
9640adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝐺 ∈ Grp)
9796adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
98 simprl 771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
996, 13grpcl 18959 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑐𝑋) → (𝑏 + 𝑐) ∈ 𝑋)
10096, 98, 79, 99syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 + 𝑐) ∈ 𝑋)
101100adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑏 + 𝑐) ∈ 𝑋)
10261adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑧𝑋)
1036, 13grpcl 18959 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑏 + 𝑐) ∈ 𝑋𝑧𝑋) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋)
10497, 101, 102, 103syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋)
10579adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑐𝑋)
10698adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑏𝑋)
1076, 13, 14grpsubsub4 19051 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((𝑏 + 𝑐) + 𝑧) ∈ 𝑋𝑐𝑋𝑏𝑋)) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
10897, 104, 105, 106, 107syl13anc 1374 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
1096, 13grpass 18960 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑧𝑋)) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
11097, 106, 105, 102, 109syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
111110oveq1d 7446 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) 𝑐) = ((𝑏 + (𝑐 + 𝑧)) 𝑐))
1126, 13grpcl 18959 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑐𝑋𝑧𝑋) → (𝑐 + 𝑧) ∈ 𝑋)
11397, 105, 102, 112syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑐 + 𝑧) ∈ 𝑋)
1146, 13, 14grpaddsubass 19048 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝑏𝑋 ∧ (𝑐 + 𝑧) ∈ 𝑋𝑐𝑋)) → ((𝑏 + (𝑐 + 𝑧)) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
11597, 106, 113, 105, 114syl13anc 1374 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + (𝑐 + 𝑧)) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
116111, 115eqtrd 2777 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
117116oveq1d 7446 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
118108, 117eqtr3d 2779 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
119118eqeq2d 2748 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) ↔ 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)))
120119rexbidva 3177 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) ↔ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)))
121120abbidv 2808 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)})
12278, 95, 1213eqtr4a 2803 . . . . . . . 8 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))})
123 eqid 2737 . . . . . . . . 9 (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏))
124123rnmpt 5968 . . . . . . . 8 ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)}
125 eqid 2737 . . . . . . . . 9 (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) = (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
126125rnmpt 5968 . . . . . . . 8 ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))}
127122, 124, 1263eqtr4g 2802 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
12839ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
129128, 79, 80fovcdmd 7605 . . . . . . . 8 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) ∈ (𝑃 pSyl 𝐺))
130 simpr 484 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑦 = (𝑐 𝑎))
131 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑥 = 𝑏)
132131oveq1d 7446 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
133132, 131oveq12d 7449 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ((𝑥 + 𝑧) 𝑥) = ((𝑏 + 𝑧) 𝑏))
134130, 133mpteq12dv 5233 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑧) 𝑏)))
135 oveq2 7439 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑏 + 𝑧) = (𝑏 + 𝑤))
136135oveq1d 7446 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑏 + 𝑧) 𝑏) = ((𝑏 + 𝑤) 𝑏))
137136cbvmptv 5255 . . . . . . . . . . 11 (𝑧 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑧) 𝑏)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏))
138134, 137eqtrdi 2793 . . . . . . . . . 10 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
139138rneqd 5949 . . . . . . . . 9 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
140 ovex 7464 . . . . . . . . . . 11 (𝑐 𝑎) ∈ V
141140mptex 7243 . . . . . . . . . 10 (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) ∈ V
142141rnex 7932 . . . . . . . . 9 ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) ∈ V
143139, 37, 142ovmpoa 7588 . . . . . . . 8 ((𝑏𝑋 ∧ (𝑐 𝑎) ∈ (𝑃 pSyl 𝐺)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
14498, 129, 143syl2anc 584 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
145 simpr 484 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
146 simpl 482 . . . . . . . . . . . . 13 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑥 = (𝑏 + 𝑐))
147146oveq1d 7446 . . . . . . . . . . . 12 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((𝑏 + 𝑐) + 𝑧))
148147, 146oveq12d 7449 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
149145, 148mpteq12dv 5233 . . . . . . . . . 10 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
150149rneqd 5949 . . . . . . . . 9 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
15151mptex 7243 . . . . . . . . . 10 (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) ∈ V
152151rnex 7932 . . . . . . . . 9 ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) ∈ V
153150, 37, 152ovmpoa 7588 . . . . . . . 8 (((𝑏 + 𝑐) ∈ 𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
154100, 80, 153syl2anc 584 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
155127, 144, 1543eqtr4rd 2788 . . . . . 6 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
156155ralrimivva 3202 . . . . 5 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
15774, 156jca 511 . . . 4 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
158157ralrimiva 3146 . . 3 (𝜑 → ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
15939, 158jca 511 . 2 (𝜑 → ( :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))))
1606, 13, 41isga 19309 . 2 ( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ↔ ((𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V) ∧ ( :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))))
1613, 159, 160sylanbrc 583 1 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225   I cid 5577   × cxp 5683  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  cen 8982  Fincfn 8985  cexp 14102  chash 14369  cprime 16708   pCnt cpc 16874  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  -gcsg 18953  SubGrpcsubg 19138   GrpAct cga 19307   pSyl cslw 19545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-eqg 19143  df-ghm 19231  df-ga 19308  df-od 19546  df-pgp 19548  df-slw 19549
This theorem is referenced by:  sylow3lem3  19647  sylow3lem5  19649
  Copyright terms: Public domain W3C validator