MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem1 Structured version   Visualization version   GIF version

Theorem sylow3lem1 18747
Description: Lemma for sylow3 18753, first part. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
Assertion
Ref Expression
sylow3lem1 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥, ,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧

Proof of Theorem sylow3lem1
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . 3 (𝜑𝐺 ∈ Grp)
2 ovex 7182 . . 3 (𝑃 pSyl 𝐺) ∈ V
31, 2jctir 523 . 2 (𝜑 → (𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V))
4 sylow3.xf . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
5 sylow3.p . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
6 sylow3.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
76fislw 18745 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
81, 4, 5, 7syl3anc 1366 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑃 pSyl 𝐺) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
98biimpa 479 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑃 pSyl 𝐺)) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
109adantrl 714 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (𝑦 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
1110simpld 497 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ (SubGrp‘𝐺))
12 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑥𝑋)
13 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
14 sylow3lem1.d . . . . . . . 8 = (-g𝐺)
15 eqid 2820 . . . . . . . 8 (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))
166, 13, 14, 15conjsubg 18385 . . . . . . 7 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺))
1711, 12, 16syl2anc 586 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺))
186, 13, 14, 15conjsubgen 18386 . . . . . . . . 9 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
1911, 12, 18syl2anc 586 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
204adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑋 ∈ Fin)
216subgss 18275 . . . . . . . . . . 11 (𝑦 ∈ (SubGrp‘𝐺) → 𝑦𝑋)
2211, 21syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦𝑋)
2320, 22ssfid 8734 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → 𝑦 ∈ Fin)
246subgss 18275 . . . . . . . . . . 11 (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ⊆ 𝑋)
2517, 24syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ⊆ 𝑋)
2620, 25ssfid 8734 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ Fin)
27 hashen 13704 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ Fin) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
2823, 26, 27syl2anc 586 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
2919, 28mpbird 259 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))))
3010simprd 498 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘𝑦) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
3129, 30eqtr3d 2857 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
326fislw 18745 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
331, 4, 5, 32syl3anc 1366 . . . . . . 7 (𝜑 → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
3433adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ (ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (SubGrp‘𝐺) ∧ (♯‘ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
3517, 31, 34mpbir2and 711 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺))) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺))
3635ralrimivva 3190 . . . 4 (𝜑 → ∀𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺))
37 sylow3lem1.m . . . . 5 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
3837fmpo 7759 . . . 4 (∀𝑥𝑋𝑦 ∈ (𝑃 pSyl 𝐺)ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) ∈ (𝑃 pSyl 𝐺) ↔ :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
3936, 38sylib 220 . . 3 (𝜑 :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
401adantr 483 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp)
41 eqid 2820 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
426, 41grpidcl 18126 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
4340, 42syl 17 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (0g𝐺) ∈ 𝑋)
44 simpr 487 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (𝑃 pSyl 𝐺))
45 simpr 487 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
46 simpl 485 . . . . . . . . . . . 12 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑥 = (0g𝐺))
4746oveq1d 7164 . . . . . . . . . . 11 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((0g𝐺) + 𝑧))
4847, 46oveq12d 7167 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = (((0g𝐺) + 𝑧) (0g𝐺)))
4945, 48mpteq12dv 5144 . . . . . . . . 9 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
5049rneqd 5801 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
51 vex 3494 . . . . . . . . . 10 𝑎 ∈ V
5251mptex 6979 . . . . . . . . 9 (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) ∈ V
5352rnex 7610 . . . . . . . 8 ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) ∈ V
5450, 37, 53ovmpoa 7298 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
5543, 44, 54syl2anc 586 . . . . . 6 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))))
561ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
57 slwsubg 18730 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝑃 pSyl 𝐺) → 𝑎 ∈ (SubGrp‘𝐺))
5857adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎 ∈ (SubGrp‘𝐺))
596subgss 18275 . . . . . . . . . . . . . . 15 (𝑎 ∈ (SubGrp‘𝐺) → 𝑎𝑋)
6058, 59syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → 𝑎𝑋)
6160sselda 3960 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → 𝑧𝑋)
626, 13, 41grplid 18128 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
6356, 61, 62syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → ((0g𝐺) + 𝑧) = 𝑧)
6463oveq1d 7164 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (((0g𝐺) + 𝑧) (0g𝐺)) = (𝑧 (0g𝐺)))
656, 41, 14grpsubid1 18179 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 (0g𝐺)) = 𝑧)
6656, 61, 65syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (𝑧 (0g𝐺)) = 𝑧)
6764, 66eqtrd 2855 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑧𝑎) → (((0g𝐺) + 𝑧) (0g𝐺)) = 𝑧)
6867mpteq2dva 5154 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = (𝑧𝑎𝑧))
69 mptresid 5911 . . . . . . . . 9 ( I ↾ 𝑎) = (𝑧𝑎𝑧)
7068, 69syl6eqr 2873 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = ( I ↾ 𝑎))
7170rneqd 5801 . . . . . . 7 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = ran ( I ↾ 𝑎))
72 rnresi 5936 . . . . . . 7 ran ( I ↾ 𝑎) = 𝑎
7371, 72syl6eq 2871 . . . . . 6 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ran (𝑧𝑎 ↦ (((0g𝐺) + 𝑧) (0g𝐺))) = 𝑎)
7455, 73eqtrd 2855 . . . . 5 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ((0g𝐺) 𝑎) = 𝑎)
75 ovex 7182 . . . . . . . . . 10 ((𝑐 + 𝑧) 𝑐) ∈ V
76 oveq2 7157 . . . . . . . . . . 11 (𝑤 = ((𝑐 + 𝑧) 𝑐) → (𝑏 + 𝑤) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
7776oveq1d 7164 . . . . . . . . . 10 (𝑤 = ((𝑐 + 𝑧) 𝑐) → ((𝑏 + 𝑤) 𝑏) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
7875, 77abrexco 6996 . . . . . . . . 9 {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)}
79 simprr 771 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
80 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑎 ∈ (𝑃 pSyl 𝐺))
81 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑦 = 𝑎)
82 simpl 485 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑥 = 𝑐)
8382oveq1d 7164 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑥 + 𝑧) = (𝑐 + 𝑧))
8483, 82oveq12d 7167 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = ((𝑐 + 𝑧) 𝑐))
8581, 84mpteq12dv 5144 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
8685rneqd 5801 . . . . . . . . . . . . . 14 ((𝑥 = 𝑐𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
8751mptex 6979 . . . . . . . . . . . . . . 15 (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) ∈ V
8887rnex 7610 . . . . . . . . . . . . . 14 ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) ∈ V
8986, 37, 88ovmpoa 7298 . . . . . . . . . . . . 13 ((𝑐𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
9079, 80, 89syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)))
91 eqid 2820 . . . . . . . . . . . . 13 (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) = (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐))
9291rnmpt 5820 . . . . . . . . . . . 12 ran (𝑧𝑎 ↦ ((𝑐 + 𝑧) 𝑐)) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}
9390, 92syl6eq 2871 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)})
9493rexeqdv 3415 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏) ↔ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)))
9594abbidv 2884 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = ((𝑐 + 𝑧) 𝑐)}𝑢 = ((𝑏 + 𝑤) 𝑏)})
9640adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝐺 ∈ Grp)
9796adantr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
98 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
996, 13grpcl 18106 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑐𝑋) → (𝑏 + 𝑐) ∈ 𝑋)
10096, 98, 79, 99syl3anc 1366 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 + 𝑐) ∈ 𝑋)
101100adantr 483 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑏 + 𝑐) ∈ 𝑋)
10261adantlr 713 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑧𝑋)
1036, 13grpcl 18106 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑏 + 𝑐) ∈ 𝑋𝑧𝑋) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋)
10497, 101, 102, 103syl3anc 1366 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) ∈ 𝑋)
10579adantr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑐𝑋)
10698adantr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑏𝑋)
1076, 13, 14grpsubsub4 18187 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((𝑏 + 𝑐) + 𝑧) ∈ 𝑋𝑐𝑋𝑏𝑋)) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
10897, 104, 105, 106, 107syl13anc 1367 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
1096, 13grpass 18107 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑧𝑋)) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
11097, 106, 105, 102, 109syl13anc 1367 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
111110oveq1d 7164 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) 𝑐) = ((𝑏 + (𝑐 + 𝑧)) 𝑐))
1126, 13grpcl 18106 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑐𝑋𝑧𝑋) → (𝑐 + 𝑧) ∈ 𝑋)
11397, 105, 102, 112syl3anc 1366 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑐 + 𝑧) ∈ 𝑋)
1146, 13, 14grpaddsubass 18184 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝑏𝑋 ∧ (𝑐 + 𝑧) ∈ 𝑋𝑐𝑋)) → ((𝑏 + (𝑐 + 𝑧)) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
11597, 106, 113, 105, 114syl13anc 1367 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + (𝑐 + 𝑧)) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
116111, 115eqtrd 2855 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) 𝑐) = (𝑏 + ((𝑐 + 𝑧) 𝑐)))
117116oveq1d 7164 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((((𝑏 + 𝑐) + 𝑧) 𝑐) 𝑏) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
118108, 117eqtr3d 2857 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏))
119118eqeq2d 2831 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) ↔ 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)))
120119rexbidva 3295 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)) ↔ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)))
121120abbidv 2884 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + ((𝑐 + 𝑧) 𝑐)) 𝑏)})
12278, 95, 1213eqtr4a 2881 . . . . . . . 8 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))})
123 eqid 2820 . . . . . . . . 9 (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏))
124123rnmpt 5820 . . . . . . . 8 ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = ((𝑏 + 𝑤) 𝑏)}
125 eqid 2820 . . . . . . . . 9 (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) = (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
126125rnmpt 5820 . . . . . . . 8 ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))}
127122, 124, 1263eqtr4g 2880 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
12839ad2antrr 724 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺))
129128, 79, 80fovrnd 7313 . . . . . . . 8 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) ∈ (𝑃 pSyl 𝐺))
130 simpr 487 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑦 = (𝑐 𝑎))
131 simpl 485 . . . . . . . . . . . . . 14 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑥 = 𝑏)
132131oveq1d 7164 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
133132, 131oveq12d 7167 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ((𝑥 + 𝑧) 𝑥) = ((𝑏 + 𝑧) 𝑏))
134130, 133mpteq12dv 5144 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑧) 𝑏)))
135 oveq2 7157 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑏 + 𝑧) = (𝑏 + 𝑤))
136135oveq1d 7164 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑏 + 𝑧) 𝑏) = ((𝑏 + 𝑤) 𝑏))
137136cbvmptv 5162 . . . . . . . . . . 11 (𝑧 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑧) 𝑏)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏))
138134, 137syl6eq 2871 . . . . . . . . . 10 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
139138rneqd 5801 . . . . . . . . 9 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
140 ovex 7182 . . . . . . . . . . 11 (𝑐 𝑎) ∈ V
141140mptex 6979 . . . . . . . . . 10 (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) ∈ V
142141rnex 7610 . . . . . . . . 9 ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)) ∈ V
143139, 37, 142ovmpoa 7298 . . . . . . . 8 ((𝑏𝑋 ∧ (𝑐 𝑎) ∈ (𝑃 pSyl 𝐺)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
14498, 129, 143syl2anc 586 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ ((𝑏 + 𝑤) 𝑏)))
145 simpr 487 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
146 simpl 485 . . . . . . . . . . . . 13 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑥 = (𝑏 + 𝑐))
147146oveq1d 7164 . . . . . . . . . . . 12 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((𝑏 + 𝑐) + 𝑧))
148147, 146oveq12d 7167 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ((𝑥 + 𝑧) 𝑥) = (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐)))
149145, 148mpteq12dv 5144 . . . . . . . . . 10 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
150149rneqd 5801 . . . . . . . . 9 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
15151mptex 6979 . . . . . . . . . 10 (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) ∈ V
152151rnex 7610 . . . . . . . . 9 ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))) ∈ V
153150, 37, 152ovmpoa 7298 . . . . . . . 8 (((𝑏 + 𝑐) ∈ 𝑋𝑎 ∈ (𝑃 pSyl 𝐺)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
154100, 80, 153syl2anc 586 . . . . . . 7 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ (((𝑏 + 𝑐) + 𝑧) (𝑏 + 𝑐))))
155127, 144, 1543eqtr4rd 2866 . . . . . 6 (((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
156155ralrimivva 3190 . . . . 5 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
15774, 156jca 514 . . . 4 ((𝜑𝑎 ∈ (𝑃 pSyl 𝐺)) → (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
158157ralrimiva 3181 . . 3 (𝜑 → ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
15939, 158jca 514 . 2 (𝜑 → ( :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))))
1606, 13, 41isga 18416 . 2 ( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ↔ ((𝐺 ∈ Grp ∧ (𝑃 pSyl 𝐺) ∈ V) ∧ ( :(𝑋 × (𝑃 pSyl 𝐺))⟶(𝑃 pSyl 𝐺) ∧ ∀𝑎 ∈ (𝑃 pSyl 𝐺)(((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))))
1613, 159, 160sylanbrc 585 1 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  {cab 2798  wral 3137  wrex 3138  Vcvv 3491  wss 3929   class class class wbr 5059  cmpt 5139   I cid 5452   × cxp 5546  ran crn 5549  cres 5550  wf 6344  cfv 6348  (class class class)co 7149  cmpo 7151  cen 8499  Fincfn 8502  cexp 13426  chash 13687  cprime 16010   pCnt cpc 16168  Basecbs 16478  +gcplusg 16560  0gc0g 16708  Grpcgrp 18098  -gcsg 18100  SubGrpcsubg 18268   GrpAct cga 18414   pSyl cslw 18650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-omul 8100  df-er 8282  df-ec 8284  df-qs 8288  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-inf 8900  df-oi 8967  df-dju 9323  df-card 9361  df-acn 9364  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12890  df-fzo 13031  df-fl 13159  df-mod 13235  df-seq 13367  df-exp 13427  df-fac 13631  df-bc 13660  df-hash 13688  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-dvds 15603  df-gcd 15839  df-prm 16011  df-pc 16169  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-eqg 18273  df-ghm 18351  df-ga 18415  df-od 18651  df-pgp 18653  df-slw 18654
This theorem is referenced by:  sylow3lem3  18749  sylow3lem5  18751
  Copyright terms: Public domain W3C validator