MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem4 Structured version   Visualization version   GIF version

Theorem sylow3lem4 19611
Description: Lemma for sylow3 19614, first part. The number of Sylow subgroups is a divisor of the size of 𝐺 reduced by the size of a Sylow subgroup of 𝐺. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem4 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem4
StepHypRef Expression
1 sylow3.x . . 3 𝑋 = (Base‘𝐺)
2 sylow3.g . . 3 (𝜑𝐺 ∈ Grp)
3 sylow3.xf . . 3 (𝜑𝑋 ∈ Fin)
4 sylow3.p . . 3 (𝜑𝑃 ∈ ℙ)
5 sylow3lem1.a . . 3 + = (+g𝐺)
6 sylow3lem1.d . . 3 = (-g𝐺)
7 sylow3lem1.m . . 3 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
8 sylow3lem2.k . . 3 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
9 sylow3lem2.h . . 3 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
10 sylow3lem2.n . . 3 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
111, 2, 3, 4, 5, 6, 7, 8, 9, 10sylow3lem3 19610 . 2 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
12 slwsubg 19591 . . . . . . . . . 10 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
138, 12syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ (SubGrp‘𝐺))
14 eqid 2735 . . . . . . . . . . 11 (𝐺s 𝑁) = (𝐺s 𝑁)
1510, 1, 5, 14nmznsg 19151 . . . . . . . . . 10 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (NrmSGrp‘(𝐺s 𝑁)))
16 nsgsubg 19141 . . . . . . . . . 10 (𝐾 ∈ (NrmSGrp‘(𝐺s 𝑁)) → 𝐾 ∈ (SubGrp‘(𝐺s 𝑁)))
1715, 16syl 17 . . . . . . . . 9 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (SubGrp‘(𝐺s 𝑁)))
1813, 17syl 17 . . . . . . . 8 (𝜑𝐾 ∈ (SubGrp‘(𝐺s 𝑁)))
1910, 1, 5nmzsubg 19148 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
202, 19syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (SubGrp‘𝐺))
2114subgbas 19113 . . . . . . . . . 10 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘(𝐺s 𝑁)))
2220, 21syl 17 . . . . . . . . 9 (𝜑𝑁 = (Base‘(𝐺s 𝑁)))
231subgss 19110 . . . . . . . . . . 11 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
2420, 23syl 17 . . . . . . . . . 10 (𝜑𝑁𝑋)
253, 24ssfid 9273 . . . . . . . . 9 (𝜑𝑁 ∈ Fin)
2622, 25eqeltrrd 2835 . . . . . . . 8 (𝜑 → (Base‘(𝐺s 𝑁)) ∈ Fin)
27 eqid 2735 . . . . . . . . 9 (Base‘(𝐺s 𝑁)) = (Base‘(𝐺s 𝑁))
2827lagsubg 19178 . . . . . . . 8 ((𝐾 ∈ (SubGrp‘(𝐺s 𝑁)) ∧ (Base‘(𝐺s 𝑁)) ∈ Fin) → (♯‘𝐾) ∥ (♯‘(Base‘(𝐺s 𝑁))))
2918, 26, 28syl2anc 584 . . . . . . 7 (𝜑 → (♯‘𝐾) ∥ (♯‘(Base‘(𝐺s 𝑁))))
3022fveq2d 6880 . . . . . . 7 (𝜑 → (♯‘𝑁) = (♯‘(Base‘(𝐺s 𝑁))))
3129, 30breqtrrd 5147 . . . . . 6 (𝜑 → (♯‘𝐾) ∥ (♯‘𝑁))
32 eqid 2735 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
3332subg0cl 19117 . . . . . . . . . . 11 (𝐾 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐾)
3413, 33syl 17 . . . . . . . . . 10 (𝜑 → (0g𝐺) ∈ 𝐾)
3534ne0d 4317 . . . . . . . . 9 (𝜑𝐾 ≠ ∅)
361subgss 19110 . . . . . . . . . . . 12 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
3713, 36syl 17 . . . . . . . . . . 11 (𝜑𝐾𝑋)
383, 37ssfid 9273 . . . . . . . . . 10 (𝜑𝐾 ∈ Fin)
39 hashnncl 14384 . . . . . . . . . 10 (𝐾 ∈ Fin → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅))
4038, 39syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅))
4135, 40mpbird 257 . . . . . . . 8 (𝜑 → (♯‘𝐾) ∈ ℕ)
4241nnzd 12615 . . . . . . 7 (𝜑 → (♯‘𝐾) ∈ ℤ)
43 hashcl 14374 . . . . . . . . 9 (𝑁 ∈ Fin → (♯‘𝑁) ∈ ℕ0)
4425, 43syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑁) ∈ ℕ0)
4544nn0zd 12614 . . . . . . 7 (𝜑 → (♯‘𝑁) ∈ ℤ)
46 pwfi 9329 . . . . . . . . . . 11 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
473, 46sylib 218 . . . . . . . . . 10 (𝜑 → 𝒫 𝑋 ∈ Fin)
48 eqid 2735 . . . . . . . . . . . . 13 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
491, 48eqger 19161 . . . . . . . . . . . 12 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋)
5020, 49syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋)
5150qsss 8792 . . . . . . . . . 10 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋)
5247, 51ssfid 9273 . . . . . . . . 9 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin)
53 hashcl 14374 . . . . . . . . 9 ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
5452, 53syl 17 . . . . . . . 8 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
5554nn0zd 12614 . . . . . . 7 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ)
56 dvdscmul 16302 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ (♯‘𝑁) ∈ ℤ ∧ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ) → ((♯‘𝐾) ∥ (♯‘𝑁) → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))))
5742, 45, 55, 56syl3anc 1373 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ (♯‘𝑁) → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))))
5831, 57mpd 15 . . . . 5 (𝜑 → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
59 hashcl 14374 . . . . . . . . 9 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
603, 59syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑋) ∈ ℕ0)
6160nn0cnd 12564 . . . . . . 7 (𝜑 → (♯‘𝑋) ∈ ℂ)
6241nncnd 12256 . . . . . . 7 (𝜑 → (♯‘𝐾) ∈ ℂ)
6341nnne0d 12290 . . . . . . 7 (𝜑 → (♯‘𝐾) ≠ 0)
6461, 62, 63divcan1d 12018 . . . . . 6 (𝜑 → (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) = (♯‘𝑋))
651, 48, 20, 3lagsubg2 19177 . . . . . 6 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
6664, 65eqtrd 2770 . . . . 5 (𝜑 → (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
6758, 66breqtrrd 5147 . . . 4 (𝜑 → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)))
681lagsubg 19178 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝑋))
6913, 3, 68syl2anc 584 . . . . . 6 (𝜑 → (♯‘𝐾) ∥ (♯‘𝑋))
7060nn0zd 12614 . . . . . . 7 (𝜑 → (♯‘𝑋) ∈ ℤ)
71 dvdsval2 16275 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) → ((♯‘𝐾) ∥ (♯‘𝑋) ↔ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ))
7242, 63, 70, 71syl3anc 1373 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ (♯‘𝑋) ↔ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ))
7369, 72mpbid 232 . . . . 5 (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ)
74 dvdsmulcr 16305 . . . . 5 (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ ∧ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) → (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) ↔ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾))))
7555, 73, 42, 63, 74syl112anc 1376 . . . 4 (𝜑 → (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) ↔ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾))))
7667, 75mpbid 232 . . 3 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾)))
771, 3, 8slwhash 19605 . . . 4 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7877oveq2d 7421 . . 3 (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) = ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
7976, 78breqtrd 5145 . 2 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8011, 79eqbrtrd 5141 1 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  wss 3926  c0 4308  𝒫 cpw 4575   class class class wbr 5119  cmpt 5201  ran crn 5655  cfv 6531  (class class class)co 7405  cmpo 7407   Er wer 8716   / cqs 8718  Fincfn 8959  0cc0 11129   · cmul 11134   / cdiv 11894  cn 12240  0cn0 12501  cz 12588  cexp 14079  chash 14348  cdvds 16272  cprime 16690   pCnt cpc 16856  Basecbs 17228  s cress 17251  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916  -gcsg 18918  SubGrpcsubg 19103  NrmSGrpcnsg 19104   ~QG cqg 19105   pSyl cslw 19508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-ga 19273  df-od 19509  df-pgp 19511  df-slw 19512
This theorem is referenced by:  sylow3  19614
  Copyright terms: Public domain W3C validator