MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem4 Structured version   Visualization version   GIF version

Theorem sylow3lem4 18749
Description: Lemma for sylow3 18752, first part. The number of Sylow subgroups is a divisor of the size of 𝐺 reduced by the size of a Sylow subgroup of 𝐺. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem4 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem4
StepHypRef Expression
1 sylow3.x . . 3 𝑋 = (Base‘𝐺)
2 sylow3.g . . 3 (𝜑𝐺 ∈ Grp)
3 sylow3.xf . . 3 (𝜑𝑋 ∈ Fin)
4 sylow3.p . . 3 (𝜑𝑃 ∈ ℙ)
5 sylow3lem1.a . . 3 + = (+g𝐺)
6 sylow3lem1.d . . 3 = (-g𝐺)
7 sylow3lem1.m . . 3 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
8 sylow3lem2.k . . 3 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
9 sylow3lem2.h . . 3 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
10 sylow3lem2.n . . 3 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
111, 2, 3, 4, 5, 6, 7, 8, 9, 10sylow3lem3 18748 . 2 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
12 slwsubg 18729 . . . . . . . . . 10 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
138, 12syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ (SubGrp‘𝐺))
14 eqid 2821 . . . . . . . . . . 11 (𝐺s 𝑁) = (𝐺s 𝑁)
1510, 1, 5, 14nmznsg 18314 . . . . . . . . . 10 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (NrmSGrp‘(𝐺s 𝑁)))
16 nsgsubg 18304 . . . . . . . . . 10 (𝐾 ∈ (NrmSGrp‘(𝐺s 𝑁)) → 𝐾 ∈ (SubGrp‘(𝐺s 𝑁)))
1715, 16syl 17 . . . . . . . . 9 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (SubGrp‘(𝐺s 𝑁)))
1813, 17syl 17 . . . . . . . 8 (𝜑𝐾 ∈ (SubGrp‘(𝐺s 𝑁)))
1910, 1, 5nmzsubg 18311 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
202, 19syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (SubGrp‘𝐺))
2114subgbas 18277 . . . . . . . . . 10 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘(𝐺s 𝑁)))
2220, 21syl 17 . . . . . . . . 9 (𝜑𝑁 = (Base‘(𝐺s 𝑁)))
231subgss 18274 . . . . . . . . . . 11 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
2420, 23syl 17 . . . . . . . . . 10 (𝜑𝑁𝑋)
253, 24ssfid 8735 . . . . . . . . 9 (𝜑𝑁 ∈ Fin)
2622, 25eqeltrrd 2914 . . . . . . . 8 (𝜑 → (Base‘(𝐺s 𝑁)) ∈ Fin)
27 eqid 2821 . . . . . . . . 9 (Base‘(𝐺s 𝑁)) = (Base‘(𝐺s 𝑁))
2827lagsubg 18336 . . . . . . . 8 ((𝐾 ∈ (SubGrp‘(𝐺s 𝑁)) ∧ (Base‘(𝐺s 𝑁)) ∈ Fin) → (♯‘𝐾) ∥ (♯‘(Base‘(𝐺s 𝑁))))
2918, 26, 28syl2anc 586 . . . . . . 7 (𝜑 → (♯‘𝐾) ∥ (♯‘(Base‘(𝐺s 𝑁))))
3022fveq2d 6669 . . . . . . 7 (𝜑 → (♯‘𝑁) = (♯‘(Base‘(𝐺s 𝑁))))
3129, 30breqtrrd 5087 . . . . . 6 (𝜑 → (♯‘𝐾) ∥ (♯‘𝑁))
32 eqid 2821 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
3332subg0cl 18281 . . . . . . . . . . 11 (𝐾 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐾)
3413, 33syl 17 . . . . . . . . . 10 (𝜑 → (0g𝐺) ∈ 𝐾)
3534ne0d 4301 . . . . . . . . 9 (𝜑𝐾 ≠ ∅)
361subgss 18274 . . . . . . . . . . . 12 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
3713, 36syl 17 . . . . . . . . . . 11 (𝜑𝐾𝑋)
383, 37ssfid 8735 . . . . . . . . . 10 (𝜑𝐾 ∈ Fin)
39 hashnncl 13721 . . . . . . . . . 10 (𝐾 ∈ Fin → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅))
4038, 39syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅))
4135, 40mpbird 259 . . . . . . . 8 (𝜑 → (♯‘𝐾) ∈ ℕ)
4241nnzd 12080 . . . . . . 7 (𝜑 → (♯‘𝐾) ∈ ℤ)
43 hashcl 13711 . . . . . . . . 9 (𝑁 ∈ Fin → (♯‘𝑁) ∈ ℕ0)
4425, 43syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑁) ∈ ℕ0)
4544nn0zd 12079 . . . . . . 7 (𝜑 → (♯‘𝑁) ∈ ℤ)
46 pwfi 8813 . . . . . . . . . . 11 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
473, 46sylib 220 . . . . . . . . . 10 (𝜑 → 𝒫 𝑋 ∈ Fin)
48 eqid 2821 . . . . . . . . . . . . 13 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
491, 48eqger 18324 . . . . . . . . . . . 12 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋)
5020, 49syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋)
5150qsss 8352 . . . . . . . . . 10 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋)
5247, 51ssfid 8735 . . . . . . . . 9 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin)
53 hashcl 13711 . . . . . . . . 9 ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
5452, 53syl 17 . . . . . . . 8 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
5554nn0zd 12079 . . . . . . 7 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ)
56 dvdscmul 15630 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ (♯‘𝑁) ∈ ℤ ∧ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ) → ((♯‘𝐾) ∥ (♯‘𝑁) → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))))
5742, 45, 55, 56syl3anc 1367 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ (♯‘𝑁) → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))))
5831, 57mpd 15 . . . . 5 (𝜑 → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
59 hashcl 13711 . . . . . . . . 9 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
603, 59syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑋) ∈ ℕ0)
6160nn0cnd 11951 . . . . . . 7 (𝜑 → (♯‘𝑋) ∈ ℂ)
6241nncnd 11648 . . . . . . 7 (𝜑 → (♯‘𝐾) ∈ ℂ)
6341nnne0d 11681 . . . . . . 7 (𝜑 → (♯‘𝐾) ≠ 0)
6461, 62, 63divcan1d 11411 . . . . . 6 (𝜑 → (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) = (♯‘𝑋))
651, 48, 20, 3lagsubg2 18335 . . . . . 6 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
6664, 65eqtrd 2856 . . . . 5 (𝜑 → (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
6758, 66breqtrrd 5087 . . . 4 (𝜑 → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)))
681lagsubg 18336 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝑋))
6913, 3, 68syl2anc 586 . . . . . 6 (𝜑 → (♯‘𝐾) ∥ (♯‘𝑋))
7060nn0zd 12079 . . . . . . 7 (𝜑 → (♯‘𝑋) ∈ ℤ)
71 dvdsval2 15604 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) → ((♯‘𝐾) ∥ (♯‘𝑋) ↔ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ))
7242, 63, 70, 71syl3anc 1367 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ (♯‘𝑋) ↔ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ))
7369, 72mpbid 234 . . . . 5 (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ)
74 dvdsmulcr 15633 . . . . 5 (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ ∧ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) → (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) ↔ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾))))
7555, 73, 42, 63, 74syl112anc 1370 . . . 4 (𝜑 → (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) ↔ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾))))
7667, 75mpbid 234 . . 3 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾)))
771, 3, 8slwhash 18743 . . . 4 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7877oveq2d 7166 . . 3 (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) = ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
7976, 78breqtrd 5085 . 2 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8011, 79eqbrtrd 5081 1 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  wss 3936  c0 4291  𝒫 cpw 4539   class class class wbr 5059  cmpt 5139  ran crn 5551  cfv 6350  (class class class)co 7150  cmpo 7152   Er wer 8280   / cqs 8282  Fincfn 8503  0cc0 10531   · cmul 10536   / cdiv 11291  cn 11632  0cn0 11891  cz 11975  cexp 13423  chash 13684  cdvds 15601  cprime 16009   pCnt cpc 16167  Basecbs 16477  s cress 16478  +gcplusg 16559  0gc0g 16707  Grpcgrp 18097  -gcsg 18099  SubGrpcsubg 18267  NrmSGrpcnsg 18268   ~QG cqg 18269   pSyl cslw 18649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-dvds 15602  df-gcd 15838  df-prm 16010  df-pc 16168  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-nsg 18271  df-eqg 18272  df-ghm 18350  df-ga 18414  df-od 18650  df-pgp 18652  df-slw 18653
This theorem is referenced by:  sylow3  18752
  Copyright terms: Public domain W3C validator