MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem4 Structured version   Visualization version   GIF version

Theorem sylow3lem4 19550
Description: Lemma for sylow3 19553, first part. The number of Sylow subgroups is a divisor of the size of 𝐺 reduced by the size of a Sylow subgroup of 𝐺. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem4 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem4
StepHypRef Expression
1 sylow3.x . . 3 𝑋 = (Base‘𝐺)
2 sylow3.g . . 3 (𝜑𝐺 ∈ Grp)
3 sylow3.xf . . 3 (𝜑𝑋 ∈ Fin)
4 sylow3.p . . 3 (𝜑𝑃 ∈ ℙ)
5 sylow3lem1.a . . 3 + = (+g𝐺)
6 sylow3lem1.d . . 3 = (-g𝐺)
7 sylow3lem1.m . . 3 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
8 sylow3lem2.k . . 3 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
9 sylow3lem2.h . . 3 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
10 sylow3lem2.n . . 3 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
111, 2, 3, 4, 5, 6, 7, 8, 9, 10sylow3lem3 19549 . 2 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
12 slwsubg 19530 . . . . . . . . . 10 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
138, 12syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ (SubGrp‘𝐺))
14 eqid 2733 . . . . . . . . . . 11 (𝐺s 𝑁) = (𝐺s 𝑁)
1510, 1, 5, 14nmznsg 19088 . . . . . . . . . 10 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (NrmSGrp‘(𝐺s 𝑁)))
16 nsgsubg 19078 . . . . . . . . . 10 (𝐾 ∈ (NrmSGrp‘(𝐺s 𝑁)) → 𝐾 ∈ (SubGrp‘(𝐺s 𝑁)))
1715, 16syl 17 . . . . . . . . 9 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ∈ (SubGrp‘(𝐺s 𝑁)))
1813, 17syl 17 . . . . . . . 8 (𝜑𝐾 ∈ (SubGrp‘(𝐺s 𝑁)))
1910, 1, 5nmzsubg 19085 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
202, 19syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (SubGrp‘𝐺))
2114subgbas 19051 . . . . . . . . . 10 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘(𝐺s 𝑁)))
2220, 21syl 17 . . . . . . . . 9 (𝜑𝑁 = (Base‘(𝐺s 𝑁)))
231subgss 19048 . . . . . . . . . . 11 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
2420, 23syl 17 . . . . . . . . . 10 (𝜑𝑁𝑋)
253, 24ssfid 9164 . . . . . . . . 9 (𝜑𝑁 ∈ Fin)
2622, 25eqeltrrd 2834 . . . . . . . 8 (𝜑 → (Base‘(𝐺s 𝑁)) ∈ Fin)
27 eqid 2733 . . . . . . . . 9 (Base‘(𝐺s 𝑁)) = (Base‘(𝐺s 𝑁))
2827lagsubg 19115 . . . . . . . 8 ((𝐾 ∈ (SubGrp‘(𝐺s 𝑁)) ∧ (Base‘(𝐺s 𝑁)) ∈ Fin) → (♯‘𝐾) ∥ (♯‘(Base‘(𝐺s 𝑁))))
2918, 26, 28syl2anc 584 . . . . . . 7 (𝜑 → (♯‘𝐾) ∥ (♯‘(Base‘(𝐺s 𝑁))))
3022fveq2d 6835 . . . . . . 7 (𝜑 → (♯‘𝑁) = (♯‘(Base‘(𝐺s 𝑁))))
3129, 30breqtrrd 5123 . . . . . 6 (𝜑 → (♯‘𝐾) ∥ (♯‘𝑁))
32 eqid 2733 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
3332subg0cl 19055 . . . . . . . . . . 11 (𝐾 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐾)
3413, 33syl 17 . . . . . . . . . 10 (𝜑 → (0g𝐺) ∈ 𝐾)
3534ne0d 4291 . . . . . . . . 9 (𝜑𝐾 ≠ ∅)
361subgss 19048 . . . . . . . . . . . 12 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
3713, 36syl 17 . . . . . . . . . . 11 (𝜑𝐾𝑋)
383, 37ssfid 9164 . . . . . . . . . 10 (𝜑𝐾 ∈ Fin)
39 hashnncl 14280 . . . . . . . . . 10 (𝐾 ∈ Fin → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅))
4038, 39syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅))
4135, 40mpbird 257 . . . . . . . 8 (𝜑 → (♯‘𝐾) ∈ ℕ)
4241nnzd 12505 . . . . . . 7 (𝜑 → (♯‘𝐾) ∈ ℤ)
43 hashcl 14270 . . . . . . . . 9 (𝑁 ∈ Fin → (♯‘𝑁) ∈ ℕ0)
4425, 43syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑁) ∈ ℕ0)
4544nn0zd 12504 . . . . . . 7 (𝜑 → (♯‘𝑁) ∈ ℤ)
46 pwfi 9214 . . . . . . . . . . 11 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
473, 46sylib 218 . . . . . . . . . 10 (𝜑 → 𝒫 𝑋 ∈ Fin)
48 eqid 2733 . . . . . . . . . . . . 13 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
491, 48eqger 19098 . . . . . . . . . . . 12 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋)
5020, 49syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋)
5150qsss 8709 . . . . . . . . . 10 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋)
5247, 51ssfid 9164 . . . . . . . . 9 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin)
53 hashcl 14270 . . . . . . . . 9 ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
5452, 53syl 17 . . . . . . . 8 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
5554nn0zd 12504 . . . . . . 7 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ)
56 dvdscmul 16200 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ (♯‘𝑁) ∈ ℤ ∧ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ) → ((♯‘𝐾) ∥ (♯‘𝑁) → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))))
5742, 45, 55, 56syl3anc 1373 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ (♯‘𝑁) → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))))
5831, 57mpd 15 . . . . 5 (𝜑 → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
59 hashcl 14270 . . . . . . . . 9 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
603, 59syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑋) ∈ ℕ0)
6160nn0cnd 12455 . . . . . . 7 (𝜑 → (♯‘𝑋) ∈ ℂ)
6241nncnd 12152 . . . . . . 7 (𝜑 → (♯‘𝐾) ∈ ℂ)
6341nnne0d 12186 . . . . . . 7 (𝜑 → (♯‘𝐾) ≠ 0)
6461, 62, 63divcan1d 11909 . . . . . 6 (𝜑 → (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) = (♯‘𝑋))
651, 48, 20, 3lagsubg2 19114 . . . . . 6 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
6664, 65eqtrd 2768 . . . . 5 (𝜑 → (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
6758, 66breqtrrd 5123 . . . 4 (𝜑 → ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)))
681lagsubg 19115 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝑋))
6913, 3, 68syl2anc 584 . . . . . 6 (𝜑 → (♯‘𝐾) ∥ (♯‘𝑋))
7060nn0zd 12504 . . . . . . 7 (𝜑 → (♯‘𝑋) ∈ ℤ)
71 dvdsval2 16173 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) → ((♯‘𝐾) ∥ (♯‘𝑋) ↔ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ))
7242, 63, 70, 71syl3anc 1373 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ (♯‘𝑋) ↔ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ))
7369, 72mpbid 232 . . . . 5 (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ)
74 dvdsmulcr 16203 . . . . 5 (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℤ ∧ ((♯‘𝑋) / (♯‘𝐾)) ∈ ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) → (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) ↔ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾))))
7555, 73, 42, 63, 74syl112anc 1376 . . . 4 (𝜑 → (((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝐾)) ∥ (((♯‘𝑋) / (♯‘𝐾)) · (♯‘𝐾)) ↔ (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾))))
7667, 75mpbid 232 . . 3 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (♯‘𝐾)))
771, 3, 8slwhash 19544 . . . 4 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7877oveq2d 7371 . . 3 (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) = ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
7976, 78breqtrd 5121 . 2 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8011, 79eqbrtrd 5117 1 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  wss 3898  c0 4282  𝒫 cpw 4551   class class class wbr 5095  cmpt 5176  ran crn 5622  cfv 6489  (class class class)co 7355  cmpo 7357   Er wer 8628   / cqs 8630  Fincfn 8879  0cc0 11017   · cmul 11022   / cdiv 11785  cn 12136  0cn0 12392  cz 12479  cexp 13975  chash 14244  cdvds 16170  cprime 16589   pCnt cpc 16755  Basecbs 17127  s cress 17148  +gcplusg 17168  0gc0g 17350  Grpcgrp 18854  -gcsg 18856  SubGrpcsubg 19041  NrmSGrpcnsg 19042   ~QG cqg 19043   pSyl cslw 19447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-nsg 19045  df-eqg 19046  df-ghm 19133  df-ga 19210  df-od 19448  df-pgp 19450  df-slw 19451
This theorem is referenced by:  sylow3  19553
  Copyright terms: Public domain W3C validator