MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fislw Structured version   Visualization version   GIF version

Theorem fislw 19606
Description: The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
fislw.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
fislw ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))

Proof of Theorem fislw
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (𝑃 pSyl 𝐺))
2 slwsubg 19591 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
31, 2syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (SubGrp‘𝐺))
4 fislw.1 . . . 4 𝑋 = (Base‘𝐺)
5 simpl2 1193 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
64, 5, 1slwhash 19605 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
73, 6jca 511 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8 simpl3 1194 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 ∈ ℙ)
9 simprl 770 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺))
10 simpl2 1193 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin)
1110adantr 480 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑋 ∈ Fin)
12 simprl 770 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ (SubGrp‘𝐺))
134subgss 19110 . . . . . . . . 9 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘𝑋)
1412, 13syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝑋)
1511, 14ssfid 9273 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ Fin)
16 simprrl 780 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
17 ssdomg 9014 . . . . . . . . 9 (𝑘 ∈ Fin → (𝐻𝑘𝐻𝑘))
1815, 16, 17sylc 65 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
19 simprrr 781 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 pGrp (𝐺s 𝑘))
20 eqid 2735 . . . . . . . . . . . . . . . . . 18 (𝐺s 𝑘) = (𝐺s 𝑘)
2120subggrp 19112 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (𝐺s 𝑘) ∈ Grp)
2212, 21syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝐺s 𝑘) ∈ Grp)
2320subgbas 19113 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘 = (Base‘(𝐺s 𝑘)))
2412, 23syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 = (Base‘(𝐺s 𝑘)))
2524, 15eqeltrrd 2835 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (Base‘(𝐺s 𝑘)) ∈ Fin)
26 eqid 2735 . . . . . . . . . . . . . . . . 17 (Base‘(𝐺s 𝑘)) = (Base‘(𝐺s 𝑘))
2726pgpfi 19586 . . . . . . . . . . . . . . . 16 (((𝐺s 𝑘) ∈ Grp ∧ (Base‘(𝐺s 𝑘)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
2822, 25, 27syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
2919, 28mpbid 232 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
3029simpld 494 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℙ)
31 prmnn 16693 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3230, 31syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℕ)
3332nnred 12255 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℝ)
3432nnge1d 12288 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 1 ≤ 𝑃)
35 eqid 2735 . . . . . . . . . . . . . . . . . 18 (0g𝐺) = (0g𝐺)
3635subg0cl 19117 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑘)
3712, 36syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (0g𝐺) ∈ 𝑘)
3837ne0d 4317 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ≠ ∅)
39 hashnncl 14384 . . . . . . . . . . . . . . . 16 (𝑘 ∈ Fin → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4015, 39syl 17 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4138, 40mpbird 257 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∈ ℕ)
4230, 41pccld 16870 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ∈ ℕ0)
4342nn0zd 12614 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ∈ ℤ)
44 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐺 ∈ Grp)
454grpbn0 18949 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4644, 45syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ≠ ∅)
47 hashnncl 14384 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4810, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4946, 48mpbird 257 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑋) ∈ ℕ)
508, 49pccld 16870 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
5150adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
5251nn0zd 12614 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
53 oveq1 7412 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝑘)) = (𝑃 pCnt (♯‘𝑘)))
54 oveq1 7412 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝑋)) = (𝑃 pCnt (♯‘𝑋)))
5553, 54breq12d 5132 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋))))
564lagsubg 19178 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑘) ∥ (♯‘𝑋))
5712, 11, 56syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∥ (♯‘𝑋))
5841nnzd 12615 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∈ ℤ)
5949adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑋) ∈ ℕ)
6059nnzd 12615 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑋) ∈ ℤ)
61 pc2dvds 16899 . . . . . . . . . . . . . . 15 (((♯‘𝑘) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → ((♯‘𝑘) ∥ (♯‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋))))
6258, 60, 61syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ∥ (♯‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋))))
6357, 62mpbid 232 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋)))
6455, 63, 30rspcdva 3602 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋)))
65 eluz2 12858 . . . . . . . . . . . 12 ((𝑃 pCnt (♯‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (♯‘𝑘))) ↔ ((𝑃 pCnt (♯‘𝑘)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋))))
6643, 52, 64, 65syl3anbrc 1344 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (♯‘𝑘))))
6733, 34, 66leexp2ad 14272 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃↑(𝑃 pCnt (♯‘𝑘))) ≤ (𝑃↑(𝑃 pCnt (♯‘𝑋))))
6829simprd 495 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))
6924fveqeq2d 6884 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) = (𝑃𝑛) ↔ (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7069rexbidv 3164 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7168, 70mpbird 257 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛))
72 pcprmpw 16903 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (♯‘𝑘) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘)))))
7330, 41, 72syl2anc 584 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘)))))
7471, 73mpbid 232 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘))))
75 simplrr 777 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7667, 74, 753brtr4d 5151 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ≤ (♯‘𝐻))
774subgss 19110 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
7877ad2antrl 728 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻𝑋)
7910, 78ssfid 9273 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ Fin)
8079adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 ∈ Fin)
81 hashdom 14397 . . . . . . . . . 10 ((𝑘 ∈ Fin ∧ 𝐻 ∈ Fin) → ((♯‘𝑘) ≤ (♯‘𝐻) ↔ 𝑘𝐻))
8215, 80, 81syl2anc 584 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ≤ (♯‘𝐻) ↔ 𝑘𝐻))
8376, 82mpbid 232 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝐻)
84 sbth 9107 . . . . . . . 8 ((𝐻𝑘𝑘𝐻) → 𝐻𝑘)
8518, 83, 84syl2anc 584 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
86 fisseneq 9265 . . . . . . 7 ((𝑘 ∈ Fin ∧ 𝐻𝑘𝐻𝑘) → 𝐻 = 𝑘)
8715, 16, 85, 86syl3anc 1373 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 = 𝑘)
8887expr 456 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) → 𝐻 = 𝑘))
89 eqid 2735 . . . . . . . . . . . . 13 (𝐺s 𝐻) = (𝐺s 𝐻)
9089subgbas 19113 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺s 𝐻)))
9190ad2antrl 728 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 = (Base‘(𝐺s 𝐻)))
9291fveq2d 6880 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (♯‘(Base‘(𝐺s 𝐻))))
93 simprr 772 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
9492, 93eqtr3d 2772 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
95 oveq2 7413 . . . . . . . . . 10 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
9695rspceeqv 3624 . . . . . . . . 9 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
9750, 94, 96syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
9889subggrp 19112 . . . . . . . . . 10 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺s 𝐻) ∈ Grp)
9998ad2antrl 728 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝐺s 𝐻) ∈ Grp)
10091, 79eqeltrrd 2835 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (Base‘(𝐺s 𝐻)) ∈ Fin)
101 eqid 2735 . . . . . . . . . 10 (Base‘(𝐺s 𝐻)) = (Base‘(𝐺s 𝐻))
102101pgpfi 19586 . . . . . . . . 9 (((𝐺s 𝐻) ∈ Grp ∧ (Base‘(𝐺s 𝐻)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
10399, 100, 102syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
1048, 97, 103mpbir2and 713 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺s 𝐻))
105104adantr 480 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝐻))
106 oveq2 7413 . . . . . . . 8 (𝐻 = 𝑘 → (𝐺s 𝐻) = (𝐺s 𝑘))
107106breq2d 5131 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ 𝑃 pGrp (𝐺s 𝑘)))
108 eqimss 4017 . . . . . . . 8 (𝐻 = 𝑘𝐻𝑘)
109108biantrurd 532 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
110107, 109bitrd 279 . . . . . 6 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
111105, 110syl5ibcom 245 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → (𝐻 = 𝑘 → (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
11288, 111impbid 212 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
113112ralrimiva 3132 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
114 isslw 19589 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
1158, 9, 113, 114syl3anbrc 1344 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (𝑃 pSyl 𝐺))
1167, 115impbida 800 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926  c0 4308   class class class wbr 5119  cfv 6531  (class class class)co 7405  cen 8956  cdom 8957  Fincfn 8959  cle 11270  cn 12240  0cn0 12501  cz 12588  cuz 12852  cexp 14079  chash 14348  cdvds 16272  cprime 16690   pCnt cpc 16856  Basecbs 17228  s cress 17251  0gc0g 17453  Grpcgrp 18916  SubGrpcsubg 19103   pGrp cpgp 19507   pSyl cslw 19508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-eqg 19108  df-ghm 19196  df-ga 19273  df-od 19509  df-pgp 19511  df-slw 19512
This theorem is referenced by:  sylow3lem1  19608
  Copyright terms: Public domain W3C validator