MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fislw Structured version   Visualization version   GIF version

Theorem fislw 18501
Description: The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
fislw.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
fislw ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))

Proof of Theorem fislw
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (𝑃 pSyl 𝐺))
2 slwsubg 18486 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
31, 2syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (SubGrp‘𝐺))
4 fislw.1 . . . 4 𝑋 = (Base‘𝐺)
5 simpl2 1172 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
64, 5, 1slwhash 18500 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
73, 6jca 504 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8 simpl3 1173 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 ∈ ℙ)
9 simprl 758 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺))
10 simpl2 1172 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin)
1110adantr 473 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑋 ∈ Fin)
12 simprl 758 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ (SubGrp‘𝐺))
134subgss 18054 . . . . . . . . 9 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘𝑋)
1412, 13syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝑋)
1511, 14ssfid 8528 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ Fin)
16 simprrl 768 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
17 ssdomg 8344 . . . . . . . . 9 (𝑘 ∈ Fin → (𝐻𝑘𝐻𝑘))
1815, 16, 17sylc 65 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
19 simprrr 769 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 pGrp (𝐺s 𝑘))
20 eqid 2772 . . . . . . . . . . . . . . . . . 18 (𝐺s 𝑘) = (𝐺s 𝑘)
2120subggrp 18056 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (𝐺s 𝑘) ∈ Grp)
2212, 21syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝐺s 𝑘) ∈ Grp)
2320subgbas 18057 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘 = (Base‘(𝐺s 𝑘)))
2412, 23syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 = (Base‘(𝐺s 𝑘)))
2524, 15eqeltrrd 2861 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (Base‘(𝐺s 𝑘)) ∈ Fin)
26 eqid 2772 . . . . . . . . . . . . . . . . 17 (Base‘(𝐺s 𝑘)) = (Base‘(𝐺s 𝑘))
2726pgpfi 18481 . . . . . . . . . . . . . . . 16 (((𝐺s 𝑘) ∈ Grp ∧ (Base‘(𝐺s 𝑘)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
2822, 25, 27syl2anc 576 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
2919, 28mpbid 224 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
3029simpld 487 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℙ)
31 prmnn 15864 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3230, 31syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℕ)
3332nnred 11448 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℝ)
3432nnge1d 11481 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 1 ≤ 𝑃)
35 eqid 2772 . . . . . . . . . . . . . . . . . 18 (0g𝐺) = (0g𝐺)
3635subg0cl 18061 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑘)
3712, 36syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (0g𝐺) ∈ 𝑘)
3837ne0d 4182 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ≠ ∅)
39 hashnncl 13535 . . . . . . . . . . . . . . . 16 (𝑘 ∈ Fin → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4015, 39syl 17 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4138, 40mpbird 249 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∈ ℕ)
4230, 41pccld 16033 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ∈ ℕ0)
4342nn0zd 11891 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ∈ ℤ)
44 simpl1 1171 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐺 ∈ Grp)
454grpbn0 17910 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4644, 45syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ≠ ∅)
47 hashnncl 13535 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4810, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4946, 48mpbird 249 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑋) ∈ ℕ)
508, 49pccld 16033 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
5150adantr 473 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
5251nn0zd 11891 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
53 oveq1 6977 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝑘)) = (𝑃 pCnt (♯‘𝑘)))
54 oveq1 6977 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝑋)) = (𝑃 pCnt (♯‘𝑋)))
5553, 54breq12d 4936 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋))))
564lagsubg 18115 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑘) ∥ (♯‘𝑋))
5712, 11, 56syl2anc 576 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∥ (♯‘𝑋))
5841nnzd 11892 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∈ ℤ)
5949adantr 473 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑋) ∈ ℕ)
6059nnzd 11892 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑋) ∈ ℤ)
61 pc2dvds 16061 . . . . . . . . . . . . . . 15 (((♯‘𝑘) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → ((♯‘𝑘) ∥ (♯‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋))))
6258, 60, 61syl2anc 576 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ∥ (♯‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋))))
6357, 62mpbid 224 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋)))
6455, 63, 30rspcdva 3535 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋)))
65 eluz2 12057 . . . . . . . . . . . 12 ((𝑃 pCnt (♯‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (♯‘𝑘))) ↔ ((𝑃 pCnt (♯‘𝑘)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋))))
6643, 52, 64, 65syl3anbrc 1323 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (♯‘𝑘))))
6733, 34, 66leexp2ad 13425 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃↑(𝑃 pCnt (♯‘𝑘))) ≤ (𝑃↑(𝑃 pCnt (♯‘𝑋))))
6829simprd 488 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))
6924fveqeq2d 6501 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) = (𝑃𝑛) ↔ (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7069rexbidv 3236 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7168, 70mpbird 249 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛))
72 pcprmpw 16065 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (♯‘𝑘) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘)))))
7330, 41, 72syl2anc 576 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘)))))
7471, 73mpbid 224 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘))))
75 simplrr 765 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7667, 74, 753brtr4d 4955 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ≤ (♯‘𝐻))
774subgss 18054 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
7877ad2antrl 715 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻𝑋)
7910, 78ssfid 8528 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ Fin)
8079adantr 473 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 ∈ Fin)
81 hashdom 13546 . . . . . . . . . 10 ((𝑘 ∈ Fin ∧ 𝐻 ∈ Fin) → ((♯‘𝑘) ≤ (♯‘𝐻) ↔ 𝑘𝐻))
8215, 80, 81syl2anc 576 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ≤ (♯‘𝐻) ↔ 𝑘𝐻))
8376, 82mpbid 224 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝐻)
84 sbth 8425 . . . . . . . 8 ((𝐻𝑘𝑘𝐻) → 𝐻𝑘)
8518, 83, 84syl2anc 576 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
86 fisseneq 8516 . . . . . . 7 ((𝑘 ∈ Fin ∧ 𝐻𝑘𝐻𝑘) → 𝐻 = 𝑘)
8715, 16, 85, 86syl3anc 1351 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 = 𝑘)
8887expr 449 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) → 𝐻 = 𝑘))
89 eqid 2772 . . . . . . . . . . . . 13 (𝐺s 𝐻) = (𝐺s 𝐻)
9089subgbas 18057 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺s 𝐻)))
9190ad2antrl 715 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 = (Base‘(𝐺s 𝐻)))
9291fveq2d 6497 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (♯‘(Base‘(𝐺s 𝐻))))
93 simprr 760 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
9492, 93eqtr3d 2810 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
95 oveq2 6978 . . . . . . . . . 10 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
9695rspceeqv 3547 . . . . . . . . 9 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
9750, 94, 96syl2anc 576 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
9889subggrp 18056 . . . . . . . . . 10 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺s 𝐻) ∈ Grp)
9998ad2antrl 715 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝐺s 𝐻) ∈ Grp)
10091, 79eqeltrrd 2861 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (Base‘(𝐺s 𝐻)) ∈ Fin)
101 eqid 2772 . . . . . . . . . 10 (Base‘(𝐺s 𝐻)) = (Base‘(𝐺s 𝐻))
102101pgpfi 18481 . . . . . . . . 9 (((𝐺s 𝐻) ∈ Grp ∧ (Base‘(𝐺s 𝐻)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
10399, 100, 102syl2anc 576 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
1048, 97, 103mpbir2and 700 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺s 𝐻))
105104adantr 473 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝐻))
106 oveq2 6978 . . . . . . . 8 (𝐻 = 𝑘 → (𝐺s 𝐻) = (𝐺s 𝑘))
107106breq2d 4935 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ 𝑃 pGrp (𝐺s 𝑘)))
108 eqimss 3909 . . . . . . . 8 (𝐻 = 𝑘𝐻𝑘)
109108biantrurd 525 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
110107, 109bitrd 271 . . . . . 6 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
111105, 110syl5ibcom 237 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → (𝐻 = 𝑘 → (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
11288, 111impbid 204 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
113112ralrimiva 3126 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
114 isslw 18484 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
1158, 9, 113, 114syl3anbrc 1323 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (𝑃 pSyl 𝐺))
1167, 115impbida 788 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wral 3082  wrex 3083  wss 3825  c0 4173   class class class wbr 4923  cfv 6182  (class class class)co 6970  cen 8295  cdom 8296  Fincfn 8298  cle 10467  cn 11431  0cn0 11700  cz 11786  cuz 12051  cexp 13237  chash 13498  cdvds 15457  cprime 15861   pCnt cpc 16019  Basecbs 16329  s cress 16330  0gc0g 16559  Grpcgrp 17881  SubGrpcsubg 18047   pGrp cpgp 18406   pSyl cslw 18407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-disj 4892  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-omul 7902  df-er 8081  df-ec 8083  df-qs 8087  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-inf 8694  df-oi 8761  df-dju 9116  df-card 9154  df-acn 9157  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-xnn0 11773  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-fz 12702  df-fzo 12843  df-fl 12970  df-mod 13046  df-seq 13178  df-exp 13238  df-fac 13442  df-bc 13471  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-clim 14696  df-sum 14894  df-dvds 15458  df-gcd 15694  df-prm 15862  df-pc 16020  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-0g 16561  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-grp 17884  df-minusg 17885  df-sbg 17886  df-mulg 18002  df-subg 18050  df-eqg 18052  df-ghm 18117  df-ga 18181  df-od 18408  df-pgp 18410  df-slw 18411
This theorem is referenced by:  sylow3lem1  18503
  Copyright terms: Public domain W3C validator