MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fislw Structured version   Visualization version   GIF version

Theorem fislw 19493
Description: The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
fislw.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
fislw ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))

Proof of Theorem fislw
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (𝑃 pSyl 𝐺))
2 slwsubg 19478 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
31, 2syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (SubGrp‘𝐺))
4 fislw.1 . . . 4 𝑋 = (Base‘𝐺)
5 simpl2 1193 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
64, 5, 1slwhash 19492 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
73, 6jca 513 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8 simpl3 1194 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 ∈ ℙ)
9 simprl 770 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺))
10 simpl2 1193 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin)
1110adantr 482 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑋 ∈ Fin)
12 simprl 770 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ (SubGrp‘𝐺))
134subgss 19007 . . . . . . . . 9 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘𝑋)
1412, 13syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝑋)
1511, 14ssfid 9267 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ Fin)
16 simprrl 780 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
17 ssdomg 8996 . . . . . . . . 9 (𝑘 ∈ Fin → (𝐻𝑘𝐻𝑘))
1815, 16, 17sylc 65 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
19 simprrr 781 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 pGrp (𝐺s 𝑘))
20 eqid 2733 . . . . . . . . . . . . . . . . . 18 (𝐺s 𝑘) = (𝐺s 𝑘)
2120subggrp 19009 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (𝐺s 𝑘) ∈ Grp)
2212, 21syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝐺s 𝑘) ∈ Grp)
2320subgbas 19010 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘 = (Base‘(𝐺s 𝑘)))
2412, 23syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 = (Base‘(𝐺s 𝑘)))
2524, 15eqeltrrd 2835 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (Base‘(𝐺s 𝑘)) ∈ Fin)
26 eqid 2733 . . . . . . . . . . . . . . . . 17 (Base‘(𝐺s 𝑘)) = (Base‘(𝐺s 𝑘))
2726pgpfi 19473 . . . . . . . . . . . . . . . 16 (((𝐺s 𝑘) ∈ Grp ∧ (Base‘(𝐺s 𝑘)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
2822, 25, 27syl2anc 585 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
2919, 28mpbid 231 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
3029simpld 496 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℙ)
31 prmnn 16611 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3230, 31syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℕ)
3332nnred 12227 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℝ)
3432nnge1d 12260 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 1 ≤ 𝑃)
35 eqid 2733 . . . . . . . . . . . . . . . . . 18 (0g𝐺) = (0g𝐺)
3635subg0cl 19014 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑘)
3712, 36syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (0g𝐺) ∈ 𝑘)
3837ne0d 4336 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ≠ ∅)
39 hashnncl 14326 . . . . . . . . . . . . . . . 16 (𝑘 ∈ Fin → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4015, 39syl 17 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4138, 40mpbird 257 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∈ ℕ)
4230, 41pccld 16783 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ∈ ℕ0)
4342nn0zd 12584 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ∈ ℤ)
44 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐺 ∈ Grp)
454grpbn0 18851 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4644, 45syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ≠ ∅)
47 hashnncl 14326 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4810, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4946, 48mpbird 257 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑋) ∈ ℕ)
508, 49pccld 16783 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
5150adantr 482 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
5251nn0zd 12584 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
53 oveq1 7416 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝑘)) = (𝑃 pCnt (♯‘𝑘)))
54 oveq1 7416 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝑋)) = (𝑃 pCnt (♯‘𝑋)))
5553, 54breq12d 5162 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋))))
564lagsubg 19072 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑘) ∥ (♯‘𝑋))
5712, 11, 56syl2anc 585 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∥ (♯‘𝑋))
5841nnzd 12585 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∈ ℤ)
5949adantr 482 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑋) ∈ ℕ)
6059nnzd 12585 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑋) ∈ ℤ)
61 pc2dvds 16812 . . . . . . . . . . . . . . 15 (((♯‘𝑘) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → ((♯‘𝑘) ∥ (♯‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋))))
6258, 60, 61syl2anc 585 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ∥ (♯‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋))))
6357, 62mpbid 231 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋)))
6455, 63, 30rspcdva 3614 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋)))
65 eluz2 12828 . . . . . . . . . . . 12 ((𝑃 pCnt (♯‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (♯‘𝑘))) ↔ ((𝑃 pCnt (♯‘𝑘)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋))))
6643, 52, 64, 65syl3anbrc 1344 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (♯‘𝑘))))
6733, 34, 66leexp2ad 14217 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃↑(𝑃 pCnt (♯‘𝑘))) ≤ (𝑃↑(𝑃 pCnt (♯‘𝑋))))
6829simprd 497 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))
6924fveqeq2d 6900 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) = (𝑃𝑛) ↔ (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7069rexbidv 3179 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7168, 70mpbird 257 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛))
72 pcprmpw 16816 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (♯‘𝑘) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘)))))
7330, 41, 72syl2anc 585 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘)))))
7471, 73mpbid 231 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘))))
75 simplrr 777 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7667, 74, 753brtr4d 5181 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ≤ (♯‘𝐻))
774subgss 19007 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
7877ad2antrl 727 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻𝑋)
7910, 78ssfid 9267 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ Fin)
8079adantr 482 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 ∈ Fin)
81 hashdom 14339 . . . . . . . . . 10 ((𝑘 ∈ Fin ∧ 𝐻 ∈ Fin) → ((♯‘𝑘) ≤ (♯‘𝐻) ↔ 𝑘𝐻))
8215, 80, 81syl2anc 585 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ≤ (♯‘𝐻) ↔ 𝑘𝐻))
8376, 82mpbid 231 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝐻)
84 sbth 9093 . . . . . . . 8 ((𝐻𝑘𝑘𝐻) → 𝐻𝑘)
8518, 83, 84syl2anc 585 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
86 fisseneq 9257 . . . . . . 7 ((𝑘 ∈ Fin ∧ 𝐻𝑘𝐻𝑘) → 𝐻 = 𝑘)
8715, 16, 85, 86syl3anc 1372 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 = 𝑘)
8887expr 458 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) → 𝐻 = 𝑘))
89 eqid 2733 . . . . . . . . . . . . 13 (𝐺s 𝐻) = (𝐺s 𝐻)
9089subgbas 19010 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺s 𝐻)))
9190ad2antrl 727 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 = (Base‘(𝐺s 𝐻)))
9291fveq2d 6896 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (♯‘(Base‘(𝐺s 𝐻))))
93 simprr 772 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
9492, 93eqtr3d 2775 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
95 oveq2 7417 . . . . . . . . . 10 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
9695rspceeqv 3634 . . . . . . . . 9 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
9750, 94, 96syl2anc 585 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
9889subggrp 19009 . . . . . . . . . 10 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺s 𝐻) ∈ Grp)
9998ad2antrl 727 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝐺s 𝐻) ∈ Grp)
10091, 79eqeltrrd 2835 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (Base‘(𝐺s 𝐻)) ∈ Fin)
101 eqid 2733 . . . . . . . . . 10 (Base‘(𝐺s 𝐻)) = (Base‘(𝐺s 𝐻))
102101pgpfi 19473 . . . . . . . . 9 (((𝐺s 𝐻) ∈ Grp ∧ (Base‘(𝐺s 𝐻)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
10399, 100, 102syl2anc 585 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
1048, 97, 103mpbir2and 712 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺s 𝐻))
105104adantr 482 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝐻))
106 oveq2 7417 . . . . . . . 8 (𝐻 = 𝑘 → (𝐺s 𝐻) = (𝐺s 𝑘))
107106breq2d 5161 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ 𝑃 pGrp (𝐺s 𝑘)))
108 eqimss 4041 . . . . . . . 8 (𝐻 = 𝑘𝐻𝑘)
109108biantrurd 534 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
110107, 109bitrd 279 . . . . . 6 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
111105, 110syl5ibcom 244 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → (𝐻 = 𝑘 → (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
11288, 111impbid 211 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
113112ralrimiva 3147 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
114 isslw 19476 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
1158, 9, 113, 114syl3anbrc 1344 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (𝑃 pSyl 𝐺))
1167, 115impbida 800 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  wss 3949  c0 4323   class class class wbr 5149  cfv 6544  (class class class)co 7409  cen 8936  cdom 8937  Fincfn 8939  cle 11249  cn 12212  0cn0 12472  cz 12558  cuz 12822  cexp 14027  chash 14290  cdvds 16197  cprime 16608   pCnt cpc 16769  Basecbs 17144  s cress 17173  0gc0g 17385  Grpcgrp 18819  SubGrpcsubg 19000   pGrp cpgp 19394   pSyl cslw 19395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-er 8703  df-ec 8705  df-qs 8709  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-acn 9937  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-dvds 16198  df-gcd 16436  df-prm 16609  df-pc 16770  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mulg 18951  df-subg 19003  df-eqg 19005  df-ghm 19090  df-ga 19154  df-od 19396  df-pgp 19398  df-slw 19399
This theorem is referenced by:  sylow3lem1  19495
  Copyright terms: Public domain W3C validator