| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgid | Structured version Visualization version GIF version | ||
| Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgid | ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 2 | ssidd 3953 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ⊆ 𝐵) | |
| 3 | issubg.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | ressid 17150 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = 𝐺) |
| 5 | 4, 1 | eqeltrd 2831 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
| 6 | 3 | issubg 19034 | . 2 ⊢ (𝐵 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐵 ⊆ 𝐵 ∧ (𝐺 ↾s 𝐵) ∈ Grp)) |
| 7 | 1, 2, 5, 6 | syl3anbrc 1344 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 ↾s cress 17136 Grpcgrp 18841 SubGrpcsubg 19028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-ress 17137 df-subg 19031 |
| This theorem is referenced by: trivsubgsnd 19061 nsgid 19077 gaid2 19210 pgpfac1 19989 pgpfac 19993 ablfaclem2 19995 ablfac 19997 qusxpid 33320 qusrn 33366 |
| Copyright terms: Public domain | W3C validator |