MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgid Structured version   Visualization version   GIF version

Theorem subgid 19044
Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
issubg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
subgid (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))

Proof of Theorem subgid
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
2 ssidd 4004 . 2 (𝐺 ∈ Grp → 𝐵𝐵)
3 issubg.b . . . 4 𝐵 = (Base‘𝐺)
43ressid 17193 . . 3 (𝐺 ∈ Grp → (𝐺s 𝐵) = 𝐺)
54, 1eqeltrd 2831 . 2 (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
63issubg 19042 . 2 (𝐵 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐵𝐵 ∧ (𝐺s 𝐵) ∈ Grp))
71, 2, 5, 6syl3anbrc 1341 1 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wss 3947  cfv 6542  (class class class)co 7411  Basecbs 17148  s cress 17177  Grpcgrp 18855  SubGrpcsubg 19036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-ress 17178  df-subg 19039
This theorem is referenced by:  trivsubgsnd  19070  nsgid  19086  gaid2  19208  pgpfac1  19991  pgpfac  19995  ablfaclem2  19997  ablfac  19999  qusxpid  32749  qusrn  32794
  Copyright terms: Public domain W3C validator