MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgid Structured version   Visualization version   GIF version

Theorem subgid 18757
Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
issubg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
subgid (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))

Proof of Theorem subgid
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
2 ssidd 3944 . 2 (𝐺 ∈ Grp → 𝐵𝐵)
3 issubg.b . . . 4 𝐵 = (Base‘𝐺)
43ressid 16954 . . 3 (𝐺 ∈ Grp → (𝐺s 𝐵) = 𝐺)
54, 1eqeltrd 2839 . 2 (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
63issubg 18755 . 2 (𝐵 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐵𝐵 ∧ (𝐺s 𝐵) ∈ Grp))
71, 2, 5, 6syl3anbrc 1342 1 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Grpcgrp 18577  SubGrpcsubg 18749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-ress 16942  df-subg 18752
This theorem is referenced by:  trivsubgsnd  18782  nsgid  18798  gaid2  18909  pgpfac1  19683  pgpfac  19687  ablfaclem2  19689  ablfac  19691  qusxpid  31559
  Copyright terms: Public domain W3C validator