| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgid | Structured version Visualization version GIF version | ||
| Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgid | ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 2 | ssidd 3987 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ⊆ 𝐵) | |
| 3 | issubg.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | ressid 17270 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = 𝐺) |
| 5 | 4, 1 | eqeltrd 2835 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
| 6 | 3 | issubg 19114 | . 2 ⊢ (𝐵 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐵 ⊆ 𝐵 ∧ (𝐺 ↾s 𝐵) ∈ Grp)) |
| 7 | 1, 2, 5, 6 | syl3anbrc 1344 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 Grpcgrp 18921 SubGrpcsubg 19108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-ress 17257 df-subg 19111 |
| This theorem is referenced by: trivsubgsnd 19142 nsgid 19158 gaid2 19291 pgpfac1 20068 pgpfac 20072 ablfaclem2 20074 ablfac 20076 qusxpid 33383 qusrn 33429 |
| Copyright terms: Public domain | W3C validator |