| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version | ||
| Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | issubg 19005 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp2bi 1146 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 Grpcgrp 18812 SubGrpcsubg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-subg 19002 |
| This theorem is referenced by: subgbas 19009 subg0 19011 subginv 19012 subgsubcl 19016 subgsub 19017 subgmulgcl 19018 subgmulg 19019 issubg2 19020 issubg4 19024 subsubg 19028 subgint 19029 trivsubgd 19032 nsgconj 19038 nsgacs 19041 ssnmz 19045 eqger 19057 eqgid 19059 eqgen 19060 eqgcpbl 19061 lagsubg2 19073 lagsubg 19074 eqg0subg 19075 resghm 19111 ghmnsgima 19119 conjsubg 19129 conjsubgen 19130 conjnmz 19131 conjnmzb 19132 gicsubgen 19158 ghmqusnsglem1 19159 ghmquskerlem1 19162 subgga 19179 gasubg 19181 gastacos 19189 orbstafun 19190 cntrsubgnsg 19222 oddvds2 19445 subgpgp 19476 odcau 19483 pgpssslw 19493 sylow2blem1 19499 sylow2blem2 19500 sylow2blem3 19501 slwhash 19503 fislw 19504 sylow2 19505 sylow3lem1 19506 sylow3lem2 19507 sylow3lem3 19508 sylow3lem4 19509 sylow3lem5 19510 sylow3lem6 19511 lsmval 19527 lsmelval 19528 lsmelvali 19529 lsmelvalm 19530 lsmsubg 19533 lsmub1 19536 lsmub2 19537 lsmless1 19539 lsmless2 19540 lsmless12 19541 lsmass 19548 subglsm 19552 lsmmod 19554 cntzrecd 19557 lsmcntz 19558 lsmcntzr 19559 lsmdisj2 19561 subgdisj1 19570 pj1f 19576 pj1id 19578 pj1lid 19580 pj1rid 19581 pj1ghm 19582 qusecsub 19714 subgabl 19715 ablcntzd 19736 lsmcom 19737 dprdff 19893 dprdfadd 19901 dprdres 19909 dprdss 19910 subgdmdprd 19915 dprdcntz2 19919 dmdprdsplit2lem 19926 ablfacrp 19947 ablfac1eu 19954 pgpfac1lem1 19955 pgpfac1lem2 19956 pgpfac1lem3a 19957 pgpfac1lem3 19958 pgpfac1lem4 19959 pgpfac1lem5 19960 pgpfaclem1 19962 pgpfaclem2 19963 pgpfaclem3 19964 ablfaclem3 19968 ablfac2 19970 prmgrpsimpgd 19995 issubrng2 20443 issubrg2 20477 issubrg3 20485 islss4 20865 dflidl2rng 21125 phssip 21565 mpllsslem 21907 subgtgp 23990 subgntr 23992 opnsubg 23993 clssubg 23994 clsnsg 23995 cldsubg 23996 qustgpopn 24005 qustgphaus 24008 tgptsmscls 24035 subgnm 24519 subgngp 24521 lssnlm 24587 cmscsscms 25271 efgh 26448 efabl 26457 efsubm 26458 subgmulgcld 32998 gsumsubg 33000 qusker 33287 eqgvscpbl 33288 grplsmid 33342 quslsm 33343 qusima 33346 nsgmgc 33350 nsgqusf1olem1 33351 nsgqusf1olem2 33352 nsgqusf1olem3 33353 qsnzr 33393 opprqusplusg 33427 opprqus0g 33428 algextdeglem1 33690 algextdeglem2 33691 algextdeglem3 33692 algextdeglem4 33693 algextdeglem5 33694 nelsubgcld 42480 nelsubgsubcld 42481 idomsubgmo 43176 |
| Copyright terms: Public domain | W3C validator |