![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version |
Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | issubg 19166 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp2bi 1147 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 ↾s cress 17283 Grpcgrp 18973 SubGrpcsubg 19160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-subg 19163 |
This theorem is referenced by: subgbas 19170 subg0 19172 subginv 19173 subgsubcl 19177 subgsub 19178 subgmulgcl 19179 subgmulg 19180 issubg2 19181 issubg4 19185 subsubg 19189 subgint 19190 trivsubgd 19193 nsgconj 19199 nsgacs 19202 ssnmz 19206 eqger 19218 eqgid 19220 eqgen 19221 eqgcpbl 19222 lagsubg2 19234 lagsubg 19235 eqg0subg 19236 resghm 19272 ghmnsgima 19280 conjsubg 19290 conjsubgen 19291 conjnmz 19292 conjnmzb 19293 gicsubgen 19319 ghmqusnsglem1 19320 ghmquskerlem1 19323 subgga 19340 gasubg 19342 gastacos 19350 orbstafun 19351 cntrsubgnsg 19383 oddvds2 19608 subgpgp 19639 odcau 19646 pgpssslw 19656 sylow2blem1 19662 sylow2blem2 19663 sylow2blem3 19664 slwhash 19666 fislw 19667 sylow2 19668 sylow3lem1 19669 sylow3lem2 19670 sylow3lem3 19671 sylow3lem4 19672 sylow3lem5 19673 sylow3lem6 19674 lsmval 19690 lsmelval 19691 lsmelvali 19692 lsmelvalm 19693 lsmsubg 19696 lsmub1 19699 lsmub2 19700 lsmless1 19702 lsmless2 19703 lsmless12 19704 lsmass 19711 subglsm 19715 lsmmod 19717 cntzrecd 19720 lsmcntz 19721 lsmcntzr 19722 lsmdisj2 19724 subgdisj1 19733 pj1f 19739 pj1id 19741 pj1lid 19743 pj1rid 19744 pj1ghm 19745 qusecsub 19877 subgabl 19878 ablcntzd 19899 lsmcom 19900 dprdff 20056 dprdfadd 20064 dprdres 20072 dprdss 20073 subgdmdprd 20078 dprdcntz2 20082 dmdprdsplit2lem 20089 ablfacrp 20110 ablfac1eu 20117 pgpfac1lem1 20118 pgpfac1lem2 20119 pgpfac1lem3a 20120 pgpfac1lem3 20121 pgpfac1lem4 20122 pgpfac1lem5 20123 pgpfaclem1 20125 pgpfaclem2 20126 pgpfaclem3 20127 ablfaclem3 20131 ablfac2 20133 prmgrpsimpgd 20158 issubrng2 20584 issubrg2 20618 issubrg3 20626 islss4 20987 dflidl2rng 21255 phssip 21703 mpllsslem 22047 subgtgp 24138 subgntr 24140 opnsubg 24141 clssubg 24142 clsnsg 24143 cldsubg 24144 qustgpopn 24153 qustgphaus 24156 tgptsmscls 24183 subgnm 24671 subgngp 24673 lssnlm 24747 cmscsscms 25432 efgh 26609 efabl 26618 efsubm 26619 subgmulgcld 33063 gsumsubg 33064 qusker 33389 eqgvscpbl 33390 grplsmid 33444 quslsm 33445 qusima 33448 nsgmgc 33452 nsgqusf1olem1 33453 nsgqusf1olem2 33454 nsgqusf1olem3 33455 qsnzr 33495 opprqusplusg 33529 opprqus0g 33530 algextdeglem1 33755 algextdeglem2 33756 algextdeglem3 33757 algextdeglem4 33758 algextdeglem5 33759 nelsubgcld 42500 nelsubgsubcld 42501 idomsubgmo 43198 |
Copyright terms: Public domain | W3C validator |