Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version |
Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | issubg 18736 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp2bi 1144 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 ↾s cress 16922 Grpcgrp 18558 SubGrpcsubg 18730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-subg 18733 |
This theorem is referenced by: subgbas 18740 subg0 18742 subginv 18743 subgsubcl 18747 subgsub 18748 subgmulgcl 18749 subgmulg 18750 issubg2 18751 issubg4 18755 subsubg 18759 subgint 18760 trivsubgd 18762 nsgconj 18768 nsgacs 18771 ssnmz 18775 eqger 18787 eqgid 18789 eqgen 18790 eqgcpbl 18791 lagsubg2 18798 lagsubg 18799 resghm 18831 ghmnsgima 18839 conjsubg 18847 conjsubgen 18848 conjnmz 18849 conjnmzb 18850 gicsubgen 18875 subgga 18887 gasubg 18889 gastacos 18897 orbstafun 18898 cntrsubgnsg 18928 oddvds2 19154 subgpgp 19183 odcau 19190 pgpssslw 19200 sylow2blem1 19206 sylow2blem2 19207 sylow2blem3 19208 slwhash 19210 fislw 19211 sylow2 19212 sylow3lem1 19213 sylow3lem2 19214 sylow3lem3 19215 sylow3lem4 19216 sylow3lem5 19217 sylow3lem6 19218 lsmval 19234 lsmelval 19235 lsmelvali 19236 lsmelvalm 19237 lsmsubg 19240 lsmub1 19243 lsmub2 19244 lsmless1 19246 lsmless2 19247 lsmless12 19248 lsmass 19256 subglsm 19260 lsmmod 19262 cntzrecd 19265 lsmcntz 19266 lsmcntzr 19267 lsmdisj2 19269 subgdisj1 19278 pj1f 19284 pj1id 19286 pj1lid 19288 pj1rid 19289 pj1ghm 19290 subgabl 19418 ablcntzd 19439 lsmcom 19440 dprdff 19596 dprdfadd 19604 dprdres 19612 dprdss 19613 subgdmdprd 19618 dprdcntz2 19622 dmdprdsplit2lem 19629 ablfacrp 19650 ablfac1eu 19657 pgpfac1lem1 19658 pgpfac1lem2 19659 pgpfac1lem3a 19660 pgpfac1lem3 19661 pgpfac1lem4 19662 pgpfac1lem5 19663 pgpfaclem1 19665 pgpfaclem2 19666 pgpfaclem3 19667 ablfaclem3 19671 ablfac2 19673 prmgrpsimpgd 19698 issubrg2 20025 issubrg3 20033 islss4 20205 phssip 20844 mpllsslem 21187 subgtgp 23237 subgntr 23239 opnsubg 23240 clssubg 23241 clsnsg 23242 cldsubg 23243 qustgpopn 23252 qustgphaus 23255 tgptsmscls 23282 subgnm 23770 subgngp 23772 lssnlm 23846 cmscsscms 24518 efgh 25678 efabl 25687 efsubm 25688 gsumsubg 31285 qusker 31528 eqgvscpbl 31529 grplsmid 31571 quslsm 31572 qusima 31573 nsgmgc 31576 nsgqusf1olem1 31577 nsgqusf1olem2 31578 nsgqusf1olem3 31579 nelsubgcld 40201 nelsubgsubcld 40202 idomsubgmo 41003 |
Copyright terms: Public domain | W3C validator |