![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version |
Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | issubg 19166 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp2bi 1146 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 Grpcgrp 18973 SubGrpcsubg 19160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-subg 19163 |
This theorem is referenced by: subgbas 19170 subg0 19172 subginv 19173 subgsubcl 19177 subgsub 19178 subgmulgcl 19179 subgmulg 19180 issubg2 19181 issubg4 19185 subsubg 19189 subgint 19190 trivsubgd 19193 nsgconj 19199 nsgacs 19202 ssnmz 19206 eqger 19218 eqgid 19220 eqgen 19221 eqgcpbl 19222 lagsubg2 19234 lagsubg 19235 eqg0subg 19236 resghm 19272 ghmnsgima 19280 conjsubg 19290 conjsubgen 19291 conjnmz 19292 conjnmzb 19293 gicsubgen 19319 ghmqusnsglem1 19320 ghmquskerlem1 19323 subgga 19340 gasubg 19342 gastacos 19350 orbstafun 19351 cntrsubgnsg 19383 oddvds2 19608 subgpgp 19639 odcau 19646 pgpssslw 19656 sylow2blem1 19662 sylow2blem2 19663 sylow2blem3 19664 slwhash 19666 fislw 19667 sylow2 19668 sylow3lem1 19669 sylow3lem2 19670 sylow3lem3 19671 sylow3lem4 19672 sylow3lem5 19673 sylow3lem6 19674 lsmval 19690 lsmelval 19691 lsmelvali 19692 lsmelvalm 19693 lsmsubg 19696 lsmub1 19699 lsmub2 19700 lsmless1 19702 lsmless2 19703 lsmless12 19704 lsmass 19711 subglsm 19715 lsmmod 19717 cntzrecd 19720 lsmcntz 19721 lsmcntzr 19722 lsmdisj2 19724 subgdisj1 19733 pj1f 19739 pj1id 19741 pj1lid 19743 pj1rid 19744 pj1ghm 19745 qusecsub 19877 subgabl 19878 ablcntzd 19899 lsmcom 19900 dprdff 20056 dprdfadd 20064 dprdres 20072 dprdss 20073 subgdmdprd 20078 dprdcntz2 20082 dmdprdsplit2lem 20089 ablfacrp 20110 ablfac1eu 20117 pgpfac1lem1 20118 pgpfac1lem2 20119 pgpfac1lem3a 20120 pgpfac1lem3 20121 pgpfac1lem4 20122 pgpfac1lem5 20123 pgpfaclem1 20125 pgpfaclem2 20126 pgpfaclem3 20127 ablfaclem3 20131 ablfac2 20133 prmgrpsimpgd 20158 issubrng2 20584 issubrg2 20620 issubrg3 20628 islss4 20983 dflidl2rng 21251 phssip 21699 mpllsslem 22043 subgtgp 24134 subgntr 24136 opnsubg 24137 clssubg 24138 clsnsg 24139 cldsubg 24140 qustgpopn 24149 qustgphaus 24152 tgptsmscls 24179 subgnm 24667 subgngp 24669 lssnlm 24743 cmscsscms 25426 efgh 26601 efabl 26610 efsubm 26611 gsumsubg 33029 qusker 33342 eqgvscpbl 33343 grplsmid 33397 quslsm 33398 qusima 33401 nsgmgc 33405 nsgqusf1olem1 33406 nsgqusf1olem2 33407 nsgqusf1olem3 33408 qsnzr 33448 opprqusplusg 33482 opprqus0g 33483 algextdeglem1 33708 algextdeglem2 33709 algextdeglem3 33710 algextdeglem4 33711 algextdeglem5 33712 nelsubgcld 42452 nelsubgsubcld 42453 idomsubgmo 43154 |
Copyright terms: Public domain | W3C validator |