Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version |
Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | issubg 18755 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp2bi 1145 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 Grpcgrp 18577 SubGrpcsubg 18749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-subg 18752 |
This theorem is referenced by: subgbas 18759 subg0 18761 subginv 18762 subgsubcl 18766 subgsub 18767 subgmulgcl 18768 subgmulg 18769 issubg2 18770 issubg4 18774 subsubg 18778 subgint 18779 trivsubgd 18781 nsgconj 18787 nsgacs 18790 ssnmz 18794 eqger 18806 eqgid 18808 eqgen 18809 eqgcpbl 18810 lagsubg2 18817 lagsubg 18818 resghm 18850 ghmnsgima 18858 conjsubg 18866 conjsubgen 18867 conjnmz 18868 conjnmzb 18869 gicsubgen 18894 subgga 18906 gasubg 18908 gastacos 18916 orbstafun 18917 cntrsubgnsg 18947 oddvds2 19173 subgpgp 19202 odcau 19209 pgpssslw 19219 sylow2blem1 19225 sylow2blem2 19226 sylow2blem3 19227 slwhash 19229 fislw 19230 sylow2 19231 sylow3lem1 19232 sylow3lem2 19233 sylow3lem3 19234 sylow3lem4 19235 sylow3lem5 19236 sylow3lem6 19237 lsmval 19253 lsmelval 19254 lsmelvali 19255 lsmelvalm 19256 lsmsubg 19259 lsmub1 19262 lsmub2 19263 lsmless1 19265 lsmless2 19266 lsmless12 19267 lsmass 19275 subglsm 19279 lsmmod 19281 cntzrecd 19284 lsmcntz 19285 lsmcntzr 19286 lsmdisj2 19288 subgdisj1 19297 pj1f 19303 pj1id 19305 pj1lid 19307 pj1rid 19308 pj1ghm 19309 subgabl 19437 ablcntzd 19458 lsmcom 19459 dprdff 19615 dprdfadd 19623 dprdres 19631 dprdss 19632 subgdmdprd 19637 dprdcntz2 19641 dmdprdsplit2lem 19648 ablfacrp 19669 ablfac1eu 19676 pgpfac1lem1 19677 pgpfac1lem2 19678 pgpfac1lem3a 19679 pgpfac1lem3 19680 pgpfac1lem4 19681 pgpfac1lem5 19682 pgpfaclem1 19684 pgpfaclem2 19685 pgpfaclem3 19686 ablfaclem3 19690 ablfac2 19692 prmgrpsimpgd 19717 issubrg2 20044 issubrg3 20052 islss4 20224 phssip 20863 mpllsslem 21206 subgtgp 23256 subgntr 23258 opnsubg 23259 clssubg 23260 clsnsg 23261 cldsubg 23262 qustgpopn 23271 qustgphaus 23274 tgptsmscls 23301 subgnm 23789 subgngp 23791 lssnlm 23865 cmscsscms 24537 efgh 25697 efabl 25706 efsubm 25707 gsumsubg 31306 qusker 31549 eqgvscpbl 31550 grplsmid 31592 quslsm 31593 qusima 31594 nsgmgc 31597 nsgqusf1olem1 31598 nsgqusf1olem2 31599 nsgqusf1olem3 31600 nelsubgcld 40221 nelsubgsubcld 40222 idomsubgmo 41023 |
Copyright terms: Public domain | W3C validator |