| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version | ||
| Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | issubg 19040 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp2bi 1146 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 Grpcgrp 18847 SubGrpcsubg 19034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-subg 19037 |
| This theorem is referenced by: subgbas 19044 subg0 19046 subginv 19047 subgsubcl 19051 subgsub 19052 subgmulgcl 19053 subgmulg 19054 issubg2 19055 issubg4 19059 subsubg 19063 subgint 19064 trivsubgd 19067 nsgconj 19073 nsgacs 19076 ssnmz 19080 eqger 19092 eqgid 19094 eqgen 19095 eqgcpbl 19096 lagsubg2 19108 lagsubg 19109 eqg0subg 19110 resghm 19146 ghmnsgima 19154 conjsubg 19164 conjsubgen 19165 conjnmz 19166 conjnmzb 19167 gicsubgen 19193 ghmqusnsglem1 19194 ghmquskerlem1 19197 subgga 19214 gasubg 19216 gastacos 19224 orbstafun 19225 cntrsubgnsg 19257 oddvds2 19480 subgpgp 19511 odcau 19518 pgpssslw 19528 sylow2blem1 19534 sylow2blem2 19535 sylow2blem3 19536 slwhash 19538 fislw 19539 sylow2 19540 sylow3lem1 19541 sylow3lem2 19542 sylow3lem3 19543 sylow3lem4 19544 sylow3lem5 19545 sylow3lem6 19546 lsmval 19562 lsmelval 19563 lsmelvali 19564 lsmelvalm 19565 lsmsubg 19568 lsmub1 19571 lsmub2 19572 lsmless1 19574 lsmless2 19575 lsmless12 19576 lsmass 19583 subglsm 19587 lsmmod 19589 cntzrecd 19592 lsmcntz 19593 lsmcntzr 19594 lsmdisj2 19596 subgdisj1 19605 pj1f 19611 pj1id 19613 pj1lid 19615 pj1rid 19616 pj1ghm 19617 qusecsub 19749 subgabl 19750 ablcntzd 19771 lsmcom 19772 dprdff 19928 dprdfadd 19936 dprdres 19944 dprdss 19945 subgdmdprd 19950 dprdcntz2 19954 dmdprdsplit2lem 19961 ablfacrp 19982 ablfac1eu 19989 pgpfac1lem1 19990 pgpfac1lem2 19991 pgpfac1lem3a 19992 pgpfac1lem3 19993 pgpfac1lem4 19994 pgpfac1lem5 19995 pgpfaclem1 19997 pgpfaclem2 19998 pgpfaclem3 19999 ablfaclem3 20003 ablfac2 20005 prmgrpsimpgd 20030 issubrng2 20478 issubrg2 20512 issubrg3 20520 islss4 20900 dflidl2rng 21160 phssip 21600 mpllsslem 21942 subgtgp 24025 subgntr 24027 opnsubg 24028 clssubg 24029 clsnsg 24030 cldsubg 24031 qustgpopn 24040 qustgphaus 24043 tgptsmscls 24070 subgnm 24554 subgngp 24556 lssnlm 24622 cmscsscms 25306 efgh 26483 efabl 26492 efsubm 26493 subgmulgcld 33027 gsumsubg 33029 qusker 33313 eqgvscpbl 33314 grplsmid 33368 quslsm 33369 qusima 33372 nsgmgc 33376 nsgqusf1olem1 33377 nsgqusf1olem2 33378 nsgqusf1olem3 33379 qsnzr 33419 opprqusplusg 33453 opprqus0g 33454 algextdeglem1 33700 algextdeglem2 33701 algextdeglem3 33702 algextdeglem4 33703 algextdeglem5 33704 nelsubgcld 42478 nelsubgsubcld 42479 idomsubgmo 43175 |
| Copyright terms: Public domain | W3C validator |