| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version | ||
| Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | issubg 19109 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp2bi 1146 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 Grpcgrp 18916 SubGrpcsubg 19103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-subg 19106 |
| This theorem is referenced by: subgbas 19113 subg0 19115 subginv 19116 subgsubcl 19120 subgsub 19121 subgmulgcl 19122 subgmulg 19123 issubg2 19124 issubg4 19128 subsubg 19132 subgint 19133 trivsubgd 19136 nsgconj 19142 nsgacs 19145 ssnmz 19149 eqger 19161 eqgid 19163 eqgen 19164 eqgcpbl 19165 lagsubg2 19177 lagsubg 19178 eqg0subg 19179 resghm 19215 ghmnsgima 19223 conjsubg 19233 conjsubgen 19234 conjnmz 19235 conjnmzb 19236 gicsubgen 19262 ghmqusnsglem1 19263 ghmquskerlem1 19266 subgga 19283 gasubg 19285 gastacos 19293 orbstafun 19294 cntrsubgnsg 19326 oddvds2 19547 subgpgp 19578 odcau 19585 pgpssslw 19595 sylow2blem1 19601 sylow2blem2 19602 sylow2blem3 19603 slwhash 19605 fislw 19606 sylow2 19607 sylow3lem1 19608 sylow3lem2 19609 sylow3lem3 19610 sylow3lem4 19611 sylow3lem5 19612 sylow3lem6 19613 lsmval 19629 lsmelval 19630 lsmelvali 19631 lsmelvalm 19632 lsmsubg 19635 lsmub1 19638 lsmub2 19639 lsmless1 19641 lsmless2 19642 lsmless12 19643 lsmass 19650 subglsm 19654 lsmmod 19656 cntzrecd 19659 lsmcntz 19660 lsmcntzr 19661 lsmdisj2 19663 subgdisj1 19672 pj1f 19678 pj1id 19680 pj1lid 19682 pj1rid 19683 pj1ghm 19684 qusecsub 19816 subgabl 19817 ablcntzd 19838 lsmcom 19839 dprdff 19995 dprdfadd 20003 dprdres 20011 dprdss 20012 subgdmdprd 20017 dprdcntz2 20021 dmdprdsplit2lem 20028 ablfacrp 20049 ablfac1eu 20056 pgpfac1lem1 20057 pgpfac1lem2 20058 pgpfac1lem3a 20059 pgpfac1lem3 20060 pgpfac1lem4 20061 pgpfac1lem5 20062 pgpfaclem1 20064 pgpfaclem2 20065 pgpfaclem3 20066 ablfaclem3 20070 ablfac2 20072 prmgrpsimpgd 20097 issubrng2 20518 issubrg2 20552 issubrg3 20560 islss4 20919 dflidl2rng 21179 phssip 21618 mpllsslem 21960 subgtgp 24043 subgntr 24045 opnsubg 24046 clssubg 24047 clsnsg 24048 cldsubg 24049 qustgpopn 24058 qustgphaus 24061 tgptsmscls 24088 subgnm 24572 subgngp 24574 lssnlm 24640 cmscsscms 25325 efgh 26502 efabl 26511 efsubm 26512 subgmulgcld 33038 gsumsubg 33040 qusker 33364 eqgvscpbl 33365 grplsmid 33419 quslsm 33420 qusima 33423 nsgmgc 33427 nsgqusf1olem1 33428 nsgqusf1olem2 33429 nsgqusf1olem3 33430 qsnzr 33470 opprqusplusg 33504 opprqus0g 33505 algextdeglem1 33751 algextdeglem2 33752 algextdeglem3 33753 algextdeglem4 33754 algextdeglem5 33755 nelsubgcld 42520 nelsubgsubcld 42521 idomsubgmo 43217 |
| Copyright terms: Public domain | W3C validator |