| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version | ||
| Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | issubg 19039 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp2bi 1146 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 Grpcgrp 18846 SubGrpcsubg 19033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-subg 19036 |
| This theorem is referenced by: subgbas 19043 subg0 19045 subginv 19046 subgsubcl 19050 subgsub 19051 subgmulgcl 19052 subgmulg 19053 issubg2 19054 issubg4 19058 subsubg 19062 subgint 19063 trivsubgd 19065 nsgconj 19071 nsgacs 19074 ssnmz 19078 eqger 19090 eqgid 19092 eqgen 19093 eqgcpbl 19094 lagsubg2 19106 lagsubg 19107 eqg0subg 19108 resghm 19144 ghmnsgima 19152 conjsubg 19162 conjsubgen 19163 conjnmz 19164 conjnmzb 19165 gicsubgen 19191 ghmqusnsglem1 19192 ghmquskerlem1 19195 subgga 19212 gasubg 19214 gastacos 19222 orbstafun 19223 cntrsubgnsg 19255 oddvds2 19478 subgpgp 19509 odcau 19516 pgpssslw 19526 sylow2blem1 19532 sylow2blem2 19533 sylow2blem3 19534 slwhash 19536 fislw 19537 sylow2 19538 sylow3lem1 19539 sylow3lem2 19540 sylow3lem3 19541 sylow3lem4 19542 sylow3lem5 19543 sylow3lem6 19544 lsmval 19560 lsmelval 19561 lsmelvali 19562 lsmelvalm 19563 lsmsubg 19566 lsmub1 19569 lsmub2 19570 lsmless1 19572 lsmless2 19573 lsmless12 19574 lsmass 19581 subglsm 19585 lsmmod 19587 cntzrecd 19590 lsmcntz 19591 lsmcntzr 19592 lsmdisj2 19594 subgdisj1 19603 pj1f 19609 pj1id 19611 pj1lid 19613 pj1rid 19614 pj1ghm 19615 qusecsub 19747 subgabl 19748 ablcntzd 19769 lsmcom 19770 dprdff 19926 dprdfadd 19934 dprdres 19942 dprdss 19943 subgdmdprd 19948 dprdcntz2 19952 dmdprdsplit2lem 19959 ablfacrp 19980 ablfac1eu 19987 pgpfac1lem1 19988 pgpfac1lem2 19989 pgpfac1lem3a 19990 pgpfac1lem3 19991 pgpfac1lem4 19992 pgpfac1lem5 19993 pgpfaclem1 19995 pgpfaclem2 19996 pgpfaclem3 19997 ablfaclem3 20001 ablfac2 20003 prmgrpsimpgd 20028 issubrng2 20473 issubrg2 20507 issubrg3 20515 islss4 20895 dflidl2rng 21155 phssip 21595 mpllsslem 21937 subgtgp 24020 subgntr 24022 opnsubg 24023 clssubg 24024 clsnsg 24025 cldsubg 24026 qustgpopn 24035 qustgphaus 24038 tgptsmscls 24065 subgnm 24548 subgngp 24550 lssnlm 24616 cmscsscms 25300 efgh 26477 efabl 26486 efsubm 26487 subgmulgcld 33024 gsumsubg 33026 qusker 33314 eqgvscpbl 33315 grplsmid 33369 quslsm 33370 qusima 33373 nsgmgc 33377 nsgqusf1olem1 33378 nsgqusf1olem2 33379 nsgqusf1olem3 33380 qsnzr 33420 opprqusplusg 33454 opprqus0g 33455 algextdeglem1 33730 algextdeglem2 33731 algextdeglem3 33732 algextdeglem4 33733 algextdeglem5 33734 nelsubgcld 42600 nelsubgsubcld 42601 idomsubgmo 43296 |
| Copyright terms: Public domain | W3C validator |