Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version |
Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | issubg 18670 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp2bi 1144 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Grpcgrp 18492 SubGrpcsubg 18664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-subg 18667 |
This theorem is referenced by: subgbas 18674 subg0 18676 subginv 18677 subgsubcl 18681 subgsub 18682 subgmulgcl 18683 subgmulg 18684 issubg2 18685 issubg4 18689 subsubg 18693 subgint 18694 trivsubgd 18696 nsgconj 18702 nsgacs 18705 ssnmz 18709 eqger 18721 eqgid 18723 eqgen 18724 eqgcpbl 18725 lagsubg2 18732 lagsubg 18733 resghm 18765 ghmnsgima 18773 conjsubg 18781 conjsubgen 18782 conjnmz 18783 conjnmzb 18784 gicsubgen 18809 subgga 18821 gasubg 18823 gastacos 18831 orbstafun 18832 cntrsubgnsg 18862 oddvds2 19088 subgpgp 19117 odcau 19124 pgpssslw 19134 sylow2blem1 19140 sylow2blem2 19141 sylow2blem3 19142 slwhash 19144 fislw 19145 sylow2 19146 sylow3lem1 19147 sylow3lem2 19148 sylow3lem3 19149 sylow3lem4 19150 sylow3lem5 19151 sylow3lem6 19152 lsmval 19168 lsmelval 19169 lsmelvali 19170 lsmelvalm 19171 lsmsubg 19174 lsmub1 19177 lsmub2 19178 lsmless1 19180 lsmless2 19181 lsmless12 19182 lsmass 19190 subglsm 19194 lsmmod 19196 cntzrecd 19199 lsmcntz 19200 lsmcntzr 19201 lsmdisj2 19203 subgdisj1 19212 pj1f 19218 pj1id 19220 pj1lid 19222 pj1rid 19223 pj1ghm 19224 subgabl 19352 ablcntzd 19373 lsmcom 19374 dprdff 19530 dprdfadd 19538 dprdres 19546 dprdss 19547 subgdmdprd 19552 dprdcntz2 19556 dmdprdsplit2lem 19563 ablfacrp 19584 ablfac1eu 19591 pgpfac1lem1 19592 pgpfac1lem2 19593 pgpfac1lem3a 19594 pgpfac1lem3 19595 pgpfac1lem4 19596 pgpfac1lem5 19597 pgpfaclem1 19599 pgpfaclem2 19600 pgpfaclem3 19601 ablfaclem3 19605 ablfac2 19607 prmgrpsimpgd 19632 issubrg2 19959 issubrg3 19967 islss4 20139 phssip 20775 mpllsslem 21116 subgtgp 23164 subgntr 23166 opnsubg 23167 clssubg 23168 clsnsg 23169 cldsubg 23170 qustgpopn 23179 qustgphaus 23182 tgptsmscls 23209 subgnm 23695 subgngp 23697 lssnlm 23771 cmscsscms 24442 efgh 25602 efabl 25611 efsubm 25612 gsumsubg 31208 qusker 31451 eqgvscpbl 31452 grplsmid 31494 quslsm 31495 qusima 31496 nsgmgc 31499 nsgqusf1olem1 31500 nsgqusf1olem2 31501 nsgqusf1olem3 31502 nelsubgcld 40147 nelsubgsubcld 40148 idomsubgmo 40939 |
Copyright terms: Public domain | W3C validator |