| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version | ||
| Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | issubg 19112 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp2bi 1146 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 ↾s cress 17251 Grpcgrp 18919 SubGrpcsubg 19106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-subg 19109 |
| This theorem is referenced by: subgbas 19116 subg0 19118 subginv 19119 subgsubcl 19123 subgsub 19124 subgmulgcl 19125 subgmulg 19126 issubg2 19127 issubg4 19131 subsubg 19135 subgint 19136 trivsubgd 19139 nsgconj 19145 nsgacs 19148 ssnmz 19152 eqger 19164 eqgid 19166 eqgen 19167 eqgcpbl 19168 lagsubg2 19180 lagsubg 19181 eqg0subg 19182 resghm 19218 ghmnsgima 19226 conjsubg 19236 conjsubgen 19237 conjnmz 19238 conjnmzb 19239 gicsubgen 19265 ghmqusnsglem1 19266 ghmquskerlem1 19269 subgga 19286 gasubg 19288 gastacos 19296 orbstafun 19297 cntrsubgnsg 19329 oddvds2 19551 subgpgp 19582 odcau 19589 pgpssslw 19599 sylow2blem1 19605 sylow2blem2 19606 sylow2blem3 19607 slwhash 19609 fislw 19610 sylow2 19611 sylow3lem1 19612 sylow3lem2 19613 sylow3lem3 19614 sylow3lem4 19615 sylow3lem5 19616 sylow3lem6 19617 lsmval 19633 lsmelval 19634 lsmelvali 19635 lsmelvalm 19636 lsmsubg 19639 lsmub1 19642 lsmub2 19643 lsmless1 19645 lsmless2 19646 lsmless12 19647 lsmass 19654 subglsm 19658 lsmmod 19660 cntzrecd 19663 lsmcntz 19664 lsmcntzr 19665 lsmdisj2 19667 subgdisj1 19676 pj1f 19682 pj1id 19684 pj1lid 19686 pj1rid 19687 pj1ghm 19688 qusecsub 19820 subgabl 19821 ablcntzd 19842 lsmcom 19843 dprdff 19999 dprdfadd 20007 dprdres 20015 dprdss 20016 subgdmdprd 20021 dprdcntz2 20025 dmdprdsplit2lem 20032 ablfacrp 20053 ablfac1eu 20060 pgpfac1lem1 20061 pgpfac1lem2 20062 pgpfac1lem3a 20063 pgpfac1lem3 20064 pgpfac1lem4 20065 pgpfac1lem5 20066 pgpfaclem1 20068 pgpfaclem2 20069 pgpfaclem3 20070 ablfaclem3 20074 ablfac2 20076 prmgrpsimpgd 20101 issubrng2 20525 issubrg2 20559 issubrg3 20567 islss4 20927 dflidl2rng 21189 phssip 21629 mpllsslem 21973 subgtgp 24058 subgntr 24060 opnsubg 24061 clssubg 24062 clsnsg 24063 cldsubg 24064 qustgpopn 24073 qustgphaus 24076 tgptsmscls 24103 subgnm 24589 subgngp 24591 lssnlm 24657 cmscsscms 25342 efgh 26518 efabl 26527 efsubm 26528 subgmulgcld 32978 gsumsubg 32979 qusker 33303 eqgvscpbl 33304 grplsmid 33358 quslsm 33359 qusima 33362 nsgmgc 33366 nsgqusf1olem1 33367 nsgqusf1olem2 33368 nsgqusf1olem3 33369 qsnzr 33409 opprqusplusg 33443 opprqus0g 33444 algextdeglem1 33688 algextdeglem2 33689 algextdeglem3 33690 algextdeglem4 33691 algextdeglem5 33692 nelsubgcld 42445 nelsubgsubcld 42446 idomsubgmo 43143 |
| Copyright terms: Public domain | W3C validator |