| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version | ||
| Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | issubg 19064 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp2bi 1146 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 ↾s cress 17206 Grpcgrp 18871 SubGrpcsubg 19058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-subg 19061 |
| This theorem is referenced by: subgbas 19068 subg0 19070 subginv 19071 subgsubcl 19075 subgsub 19076 subgmulgcl 19077 subgmulg 19078 issubg2 19079 issubg4 19083 subsubg 19087 subgint 19088 trivsubgd 19091 nsgconj 19097 nsgacs 19100 ssnmz 19104 eqger 19116 eqgid 19118 eqgen 19119 eqgcpbl 19120 lagsubg2 19132 lagsubg 19133 eqg0subg 19134 resghm 19170 ghmnsgima 19178 conjsubg 19188 conjsubgen 19189 conjnmz 19190 conjnmzb 19191 gicsubgen 19217 ghmqusnsglem1 19218 ghmquskerlem1 19221 subgga 19238 gasubg 19240 gastacos 19248 orbstafun 19249 cntrsubgnsg 19281 oddvds2 19502 subgpgp 19533 odcau 19540 pgpssslw 19550 sylow2blem1 19556 sylow2blem2 19557 sylow2blem3 19558 slwhash 19560 fislw 19561 sylow2 19562 sylow3lem1 19563 sylow3lem2 19564 sylow3lem3 19565 sylow3lem4 19566 sylow3lem5 19567 sylow3lem6 19568 lsmval 19584 lsmelval 19585 lsmelvali 19586 lsmelvalm 19587 lsmsubg 19590 lsmub1 19593 lsmub2 19594 lsmless1 19596 lsmless2 19597 lsmless12 19598 lsmass 19605 subglsm 19609 lsmmod 19611 cntzrecd 19614 lsmcntz 19615 lsmcntzr 19616 lsmdisj2 19618 subgdisj1 19627 pj1f 19633 pj1id 19635 pj1lid 19637 pj1rid 19638 pj1ghm 19639 qusecsub 19771 subgabl 19772 ablcntzd 19793 lsmcom 19794 dprdff 19950 dprdfadd 19958 dprdres 19966 dprdss 19967 subgdmdprd 19972 dprdcntz2 19976 dmdprdsplit2lem 19983 ablfacrp 20004 ablfac1eu 20011 pgpfac1lem1 20012 pgpfac1lem2 20013 pgpfac1lem3a 20014 pgpfac1lem3 20015 pgpfac1lem4 20016 pgpfac1lem5 20017 pgpfaclem1 20019 pgpfaclem2 20020 pgpfaclem3 20021 ablfaclem3 20025 ablfac2 20027 prmgrpsimpgd 20052 issubrng2 20473 issubrg2 20507 issubrg3 20515 islss4 20874 dflidl2rng 21134 phssip 21573 mpllsslem 21915 subgtgp 23998 subgntr 24000 opnsubg 24001 clssubg 24002 clsnsg 24003 cldsubg 24004 qustgpopn 24013 qustgphaus 24016 tgptsmscls 24043 subgnm 24527 subgngp 24529 lssnlm 24595 cmscsscms 25280 efgh 26457 efabl 26466 efsubm 26467 subgmulgcld 32992 gsumsubg 32994 qusker 33328 eqgvscpbl 33329 grplsmid 33383 quslsm 33384 qusima 33387 nsgmgc 33391 nsgqusf1olem1 33392 nsgqusf1olem2 33393 nsgqusf1olem3 33394 qsnzr 33434 opprqusplusg 33468 opprqus0g 33469 algextdeglem1 33715 algextdeglem2 33716 algextdeglem3 33717 algextdeglem4 33718 algextdeglem5 33719 nelsubgcld 42457 nelsubgsubcld 42458 idomsubgmo 43154 |
| Copyright terms: Public domain | W3C validator |