![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgss | Structured version Visualization version GIF version |
Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | issubg 19161 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp2bi 1146 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 ⊆ wss 3970 ‘cfv 6572 (class class class)co 7445 Basecbs 17253 ↾s cress 17282 Grpcgrp 18968 SubGrpcsubg 19155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fv 6580 df-ov 7448 df-subg 19158 |
This theorem is referenced by: subgbas 19165 subg0 19167 subginv 19168 subgsubcl 19172 subgsub 19173 subgmulgcl 19174 subgmulg 19175 issubg2 19176 issubg4 19180 subsubg 19184 subgint 19185 trivsubgd 19188 nsgconj 19194 nsgacs 19197 ssnmz 19201 eqger 19213 eqgid 19215 eqgen 19216 eqgcpbl 19217 lagsubg2 19229 lagsubg 19230 eqg0subg 19231 resghm 19267 ghmnsgima 19275 conjsubg 19285 conjsubgen 19286 conjnmz 19287 conjnmzb 19288 gicsubgen 19314 ghmqusnsglem1 19315 ghmquskerlem1 19318 subgga 19335 gasubg 19337 gastacos 19345 orbstafun 19346 cntrsubgnsg 19378 oddvds2 19603 subgpgp 19634 odcau 19641 pgpssslw 19651 sylow2blem1 19657 sylow2blem2 19658 sylow2blem3 19659 slwhash 19661 fislw 19662 sylow2 19663 sylow3lem1 19664 sylow3lem2 19665 sylow3lem3 19666 sylow3lem4 19667 sylow3lem5 19668 sylow3lem6 19669 lsmval 19685 lsmelval 19686 lsmelvali 19687 lsmelvalm 19688 lsmsubg 19691 lsmub1 19694 lsmub2 19695 lsmless1 19697 lsmless2 19698 lsmless12 19699 lsmass 19706 subglsm 19710 lsmmod 19712 cntzrecd 19715 lsmcntz 19716 lsmcntzr 19717 lsmdisj2 19719 subgdisj1 19728 pj1f 19734 pj1id 19736 pj1lid 19738 pj1rid 19739 pj1ghm 19740 qusecsub 19872 subgabl 19873 ablcntzd 19894 lsmcom 19895 dprdff 20051 dprdfadd 20059 dprdres 20067 dprdss 20068 subgdmdprd 20073 dprdcntz2 20077 dmdprdsplit2lem 20084 ablfacrp 20105 ablfac1eu 20112 pgpfac1lem1 20113 pgpfac1lem2 20114 pgpfac1lem3a 20115 pgpfac1lem3 20116 pgpfac1lem4 20117 pgpfac1lem5 20118 pgpfaclem1 20120 pgpfaclem2 20121 pgpfaclem3 20122 ablfaclem3 20126 ablfac2 20128 prmgrpsimpgd 20153 issubrng2 20579 issubrg2 20615 issubrg3 20623 islss4 20978 dflidl2rng 21246 phssip 21694 mpllsslem 22037 subgtgp 24127 subgntr 24129 opnsubg 24130 clssubg 24131 clsnsg 24132 cldsubg 24133 qustgpopn 24142 qustgphaus 24145 tgptsmscls 24172 subgnm 24660 subgngp 24662 lssnlm 24736 cmscsscms 25419 efgh 26592 efabl 26601 efsubm 26602 gsumsubg 33021 qusker 33334 eqgvscpbl 33335 grplsmid 33389 quslsm 33390 qusima 33393 nsgmgc 33397 nsgqusf1olem1 33398 nsgqusf1olem2 33399 nsgqusf1olem3 33400 qsnzr 33440 opprqusplusg 33474 opprqus0g 33475 algextdeglem1 33700 algextdeglem2 33701 algextdeglem3 33702 algextdeglem4 33703 algextdeglem5 33704 nelsubgcld 42385 nelsubgsubcld 42386 idomsubgmo 43094 |
Copyright terms: Public domain | W3C validator |