Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subggrp | Structured version Visualization version GIF version |
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
subggrp | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subggrp.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | eqid 2758 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | issubg 18346 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
4 | 3 | simp3bi 1144 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
5 | 1, 4 | eqeltrid 2856 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 ↾s cress 16542 Grpcgrp 18169 SubGrpcsubg 18340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fv 6343 df-ov 7153 df-subg 18343 |
This theorem is referenced by: subg0 18352 subginv 18353 subg0cl 18354 subginvcl 18355 subgcl 18356 issubg2 18361 issubgrpd 18363 subsubg 18369 resghm 18441 resghm2b 18443 subgga 18497 gasubg 18499 odsubdvds 18763 pgp0 18788 subgpgp 18789 sylow2blem2 18813 slwhash 18816 fislw 18817 subglsm 18866 pj1ghm 18896 subgabl 19024 cntrabl 19031 cycsubgcyg 19089 subgdmdprd 19224 subgdprd 19225 ablfacrplem 19255 pgpfaclem1 19271 pgpfaclem3 19273 ablfaclem3 19277 issubrg2 19623 subdrgint 19650 islss3 19799 zringcyg 20259 cnmsgngrp 20344 psgnghm 20345 mplgrp 20781 scmatghm 21233 m2cpmrngiso 21458 subgtgp 22805 subgngp 23337 reefgim 25144 amgmlemALT 45722 |
Copyright terms: Public domain | W3C validator |