| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subggrp | Structured version Visualization version GIF version | ||
| Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subggrp | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subggrp.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 2 | issubg 19058 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 4 | 3 | simp3bi 1147 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 Grpcgrp 18865 SubGrpcsubg 19052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-subg 19055 |
| This theorem is referenced by: subg0 19064 subginv 19065 subg0cl 19066 subginvcl 19067 subgcl 19068 issubg2 19073 issubgrpd 19075 subsubg 19081 resghm 19164 resghm2b 19166 subgga 19232 gasubg 19234 odsubdvds 19501 pgp0 19526 subgpgp 19527 sylow2blem2 19551 slwhash 19554 fislw 19555 subglsm 19603 pj1ghm 19633 subgabl 19766 cntrabl 19773 cycsubgcyg 19831 subgdmdprd 19966 subgdprd 19967 ablfacrplem 19997 pgpfaclem1 20013 pgpfaclem3 20015 ablfaclem3 20019 issubrg2 20501 subdrgint 20712 islss3 20865 zringcyg 21379 cnmsgngrp 21488 psgnghm 21489 mplgrp 21926 scmatghm 22420 subgtgp 23992 subgngp 24523 reefgim 26360 subgmulgcld 32984 ressply1sub 33539 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |