MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subggrp Structured version   Visualization version   GIF version

Theorem subggrp 19008
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subggrp (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem subggrp
StepHypRef Expression
1 subggrp.h . 2 𝐻 = (𝐺s 𝑆)
2 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32issubg 19005 . . 3 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺s 𝑆) ∈ Grp))
43simp3bi 1147 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
51, 4eqeltrid 2832 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  Grpcgrp 18812  SubGrpcsubg 18999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-subg 19002
This theorem is referenced by:  subg0  19011  subginv  19012  subg0cl  19013  subginvcl  19014  subgcl  19015  issubg2  19020  issubgrpd  19022  subsubg  19028  resghm  19111  resghm2b  19113  subgga  19179  gasubg  19181  odsubdvds  19450  pgp0  19475  subgpgp  19476  sylow2blem2  19500  slwhash  19503  fislw  19504  subglsm  19552  pj1ghm  19582  subgabl  19715  cntrabl  19722  cycsubgcyg  19780  subgdmdprd  19915  subgdprd  19916  ablfacrplem  19946  pgpfaclem1  19962  pgpfaclem3  19964  ablfaclem3  19968  issubrg2  20477  subdrgint  20688  islss3  20862  zringcyg  21376  cnmsgngrp  21486  psgnghm  21487  mplgrp  21924  scmatghm  22418  subgtgp  23990  subgngp  24521  reefgim  26358  subgmulgcld  32998  ressply1sub  33506  amgmlemALT  49798
  Copyright terms: Public domain W3C validator