MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subggrp Structured version   Visualization version   GIF version

Theorem subggrp 19061
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subggrp (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem subggrp
StepHypRef Expression
1 subggrp.h . 2 𝐻 = (𝐺s 𝑆)
2 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32issubg 19058 . . 3 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺s 𝑆) ∈ Grp))
43simp3bi 1147 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
51, 4eqeltrid 2832 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  Grpcgrp 18865  SubGrpcsubg 19052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-subg 19055
This theorem is referenced by:  subg0  19064  subginv  19065  subg0cl  19066  subginvcl  19067  subgcl  19068  issubg2  19073  issubgrpd  19075  subsubg  19081  resghm  19164  resghm2b  19166  subgga  19232  gasubg  19234  odsubdvds  19501  pgp0  19526  subgpgp  19527  sylow2blem2  19551  slwhash  19554  fislw  19555  subglsm  19603  pj1ghm  19633  subgabl  19766  cntrabl  19773  cycsubgcyg  19831  subgdmdprd  19966  subgdprd  19967  ablfacrplem  19997  pgpfaclem1  20013  pgpfaclem3  20015  ablfaclem3  20019  issubrg2  20501  subdrgint  20712  islss3  20865  zringcyg  21379  cnmsgngrp  21488  psgnghm  21489  mplgrp  21926  scmatghm  22420  subgtgp  23992  subgngp  24523  reefgim  26360  subgmulgcld  32984  ressply1sub  33539  amgmlemALT  49792
  Copyright terms: Public domain W3C validator