| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subggrp | Structured version Visualization version GIF version | ||
| Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subggrp | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subggrp.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 2 | issubg 19005 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 4 | 3 | simp3bi 1147 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 Grpcgrp 18812 SubGrpcsubg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-subg 19002 |
| This theorem is referenced by: subg0 19011 subginv 19012 subg0cl 19013 subginvcl 19014 subgcl 19015 issubg2 19020 issubgrpd 19022 subsubg 19028 resghm 19111 resghm2b 19113 subgga 19179 gasubg 19181 odsubdvds 19450 pgp0 19475 subgpgp 19476 sylow2blem2 19500 slwhash 19503 fislw 19504 subglsm 19552 pj1ghm 19582 subgabl 19715 cntrabl 19722 cycsubgcyg 19780 subgdmdprd 19915 subgdprd 19916 ablfacrplem 19946 pgpfaclem1 19962 pgpfaclem3 19964 ablfaclem3 19968 issubrg2 20477 subdrgint 20688 islss3 20862 zringcyg 21376 cnmsgngrp 21486 psgnghm 21487 mplgrp 21924 scmatghm 22418 subgtgp 23990 subgngp 24521 reefgim 26358 subgmulgcld 32998 ressply1sub 33506 amgmlemALT 49798 |
| Copyright terms: Public domain | W3C validator |