| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subggrp | Structured version Visualization version GIF version | ||
| Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subggrp | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subggrp.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 2 | issubg 19065 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 4 | 3 | simp3bi 1147 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 5 | 1, 4 | eqeltrid 2833 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 Grpcgrp 18872 SubGrpcsubg 19059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-subg 19062 |
| This theorem is referenced by: subg0 19071 subginv 19072 subg0cl 19073 subginvcl 19074 subgcl 19075 issubg2 19080 issubgrpd 19082 subsubg 19088 resghm 19171 resghm2b 19173 subgga 19239 gasubg 19241 odsubdvds 19508 pgp0 19533 subgpgp 19534 sylow2blem2 19558 slwhash 19561 fislw 19562 subglsm 19610 pj1ghm 19640 subgabl 19773 cntrabl 19780 cycsubgcyg 19838 subgdmdprd 19973 subgdprd 19974 ablfacrplem 20004 pgpfaclem1 20020 pgpfaclem3 20022 ablfaclem3 20026 issubrg2 20508 subdrgint 20719 islss3 20872 zringcyg 21386 cnmsgngrp 21495 psgnghm 21496 mplgrp 21933 scmatghm 22427 subgtgp 23999 subgngp 24530 reefgim 26367 subgmulgcld 32991 ressply1sub 33546 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |