MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subggrp Structured version   Visualization version   GIF version

Theorem subggrp 19042
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subggrp (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem subggrp
StepHypRef Expression
1 subggrp.h . 2 𝐻 = (𝐺s 𝑆)
2 eqid 2731 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32issubg 19039 . . 3 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺s 𝑆) ∈ Grp))
43simp3bi 1147 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
51, 4eqeltrid 2835 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  Grpcgrp 18846  SubGrpcsubg 19033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-subg 19036
This theorem is referenced by:  subg0  19045  subginv  19046  subg0cl  19047  subginvcl  19048  subgcl  19049  issubg2  19054  issubgrpd  19056  subsubg  19062  resghm  19144  resghm2b  19146  subgga  19212  gasubg  19214  odsubdvds  19483  pgp0  19508  subgpgp  19509  sylow2blem2  19533  slwhash  19536  fislw  19537  subglsm  19585  pj1ghm  19615  subgabl  19748  cntrabl  19755  cycsubgcyg  19813  subgdmdprd  19948  subgdprd  19949  ablfacrplem  19979  pgpfaclem1  19995  pgpfaclem3  19997  ablfaclem3  20001  issubrg2  20507  subdrgint  20718  islss3  20892  zringcyg  21406  cnmsgngrp  21516  psgnghm  21517  mplgrp  21954  scmatghm  22448  subgtgp  24020  subgngp  24550  reefgim  26387  subgmulgcld  33024  ressply1sub  33533  amgmlemALT  49914
  Copyright terms: Public domain W3C validator