MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subggrp Structured version   Visualization version   GIF version

Theorem subggrp 19112
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subggrp (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem subggrp
StepHypRef Expression
1 subggrp.h . 2 𝐻 = (𝐺s 𝑆)
2 eqid 2735 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32issubg 19109 . . 3 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺s 𝑆) ∈ Grp))
43simp3bi 1147 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
51, 4eqeltrid 2838 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3926  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  Grpcgrp 18916  SubGrpcsubg 19103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-subg 19106
This theorem is referenced by:  subg0  19115  subginv  19116  subg0cl  19117  subginvcl  19118  subgcl  19119  issubg2  19124  issubgrpd  19126  subsubg  19132  resghm  19215  resghm2b  19217  subgga  19283  gasubg  19285  odsubdvds  19552  pgp0  19577  subgpgp  19578  sylow2blem2  19602  slwhash  19605  fislw  19606  subglsm  19654  pj1ghm  19684  subgabl  19817  cntrabl  19824  cycsubgcyg  19882  subgdmdprd  20017  subgdprd  20018  ablfacrplem  20048  pgpfaclem1  20064  pgpfaclem3  20066  ablfaclem3  20070  issubrg2  20552  subdrgint  20763  islss3  20916  zringcyg  21430  cnmsgngrp  21539  psgnghm  21540  mplgrp  21977  scmatghm  22471  subgtgp  24043  subgngp  24574  reefgim  26412  subgmulgcld  33038  ressply1sub  33583  amgmlemALT  49667
  Copyright terms: Public domain W3C validator