![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subggrp | Structured version Visualization version GIF version |
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
subggrp | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subggrp.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | eqid 2797 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | issubg 17904 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
4 | 3 | simp3bi 1178 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
5 | 1, 4 | syl5eqel 2880 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ⊆ wss 3767 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 ↾s cress 16182 Grpcgrp 17735 SubGrpcsubg 17898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fv 6107 df-ov 6879 df-subg 17901 |
This theorem is referenced by: subg0 17910 subginv 17911 subg0cl 17912 subginvcl 17913 subgcl 17914 issubg2 17919 issubgrpd 17921 subsubg 17927 resghm 17986 resghm2b 17988 subgga 18042 gasubg 18044 odsubdvds 18296 pgp0 18321 subgpgp 18322 sylow2blem2 18346 slwhash 18349 fislw 18350 subglsm 18396 pj1ghm 18426 subgabl 18553 cycsubgcyg 18614 subgdmdprd 18746 subgdprd 18747 ablfacrplem 18777 pgpfaclem1 18793 pgpfaclem3 18795 ablfaclem3 18799 issubrg2 19115 islss3 19277 mplgrp 19770 zringcyg 20158 cnmsgngrp 20243 psgnghm 20244 scmatghm 20662 m2cpmrngiso 20888 subgtgp 22234 subgngp 22764 reefgim 24542 amgmlemALT 43339 |
Copyright terms: Public domain | W3C validator |