![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subggrp | Structured version Visualization version GIF version |
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
subggrp | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subggrp.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | eqid 2724 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | issubg 19043 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
4 | 3 | simp3bi 1144 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
5 | 1, 4 | eqeltrid 2829 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3940 ‘cfv 6533 (class class class)co 7401 Basecbs 17143 ↾s cress 17172 Grpcgrp 18853 SubGrpcsubg 19037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-subg 19040 |
This theorem is referenced by: subg0 19049 subginv 19050 subg0cl 19051 subginvcl 19052 subgcl 19053 issubg2 19058 issubgrpd 19060 subsubg 19066 resghm 19147 resghm2b 19149 subgga 19206 gasubg 19208 odsubdvds 19481 pgp0 19506 subgpgp 19507 sylow2blem2 19531 slwhash 19534 fislw 19535 subglsm 19583 pj1ghm 19613 subgabl 19746 cntrabl 19753 cycsubgcyg 19811 subgdmdprd 19946 subgdprd 19947 ablfacrplem 19977 pgpfaclem1 19993 pgpfaclem3 19995 ablfaclem3 19999 issubrg2 20484 subdrgint 20644 islss3 20796 zringcyg 21324 cnmsgngrp 21440 psgnghm 21441 mplgrp 21886 scmatghm 22357 subgtgp 23931 subgngp 24466 reefgim 26304 ressply1sub 33126 amgmlemALT 48038 |
Copyright terms: Public domain | W3C validator |