![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subggrp | Structured version Visualization version GIF version |
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
subggrp | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subggrp.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | eqid 2740 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | issubg 19166 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
4 | 3 | simp3bi 1147 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
5 | 1, 4 | eqeltrid 2848 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 Grpcgrp 18973 SubGrpcsubg 19160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-subg 19163 |
This theorem is referenced by: subg0 19172 subginv 19173 subg0cl 19174 subginvcl 19175 subgcl 19176 issubg2 19181 issubgrpd 19183 subsubg 19189 resghm 19272 resghm2b 19274 subgga 19340 gasubg 19342 odsubdvds 19613 pgp0 19638 subgpgp 19639 sylow2blem2 19663 slwhash 19666 fislw 19667 subglsm 19715 pj1ghm 19745 subgabl 19878 cntrabl 19885 cycsubgcyg 19943 subgdmdprd 20078 subgdprd 20079 ablfacrplem 20109 pgpfaclem1 20125 pgpfaclem3 20127 ablfaclem3 20131 issubrg2 20620 subdrgint 20826 islss3 20980 zringcyg 21503 cnmsgngrp 21620 psgnghm 21621 mplgrp 22060 scmatghm 22560 subgtgp 24134 subgngp 24669 reefgim 26512 ressply1sub 33560 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |