![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trivsubgsnd | Structured version Visualization version GIF version |
Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
trivsubgsnd.1 | ⊢ 𝐵 = (Base‘𝐺) |
trivsubgsnd.2 | ⊢ 0 = (0g‘𝐺) |
trivsubgsnd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
trivsubgsnd.4 | ⊢ (𝜑 → 𝐵 = { 0 }) |
Ref | Expression |
---|---|
trivsubgsnd | ⊢ (𝜑 → (SubGrp‘𝐺) = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trivsubgsnd.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | trivsubgsnd.2 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
3 | trivsubgsnd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
4 | 3 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp) |
5 | trivsubgsnd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = { 0 }) | |
6 | 5 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (SubGrp‘𝐺)) → 𝐵 = { 0 }) |
7 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ (SubGrp‘𝐺)) | |
8 | 1, 2, 4, 6, 7 | trivsubgd 19110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 = 𝐵) |
9 | velsn 4640 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
10 | 8, 9 | sylibr 233 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ {𝐵}) |
11 | 10 | ex 411 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ∈ {𝐵})) |
12 | 11 | ssrdv 3978 | . 2 ⊢ (𝜑 → (SubGrp‘𝐺) ⊆ {𝐵}) |
13 | 1 | subgid 19085 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
14 | 3, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) |
15 | 14 | snssd 4808 | . 2 ⊢ (𝜑 → {𝐵} ⊆ (SubGrp‘𝐺)) |
16 | 12, 15 | eqssd 3990 | 1 ⊢ (𝜑 → (SubGrp‘𝐺) = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {csn 4624 ‘cfv 6542 Basecbs 17177 0gc0g 17418 Grpcgrp 18892 SubGrpcsubg 19077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-subg 19080 |
This theorem is referenced by: trivnsgd 19129 |
Copyright terms: Public domain | W3C validator |