![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gaid2 | Structured version Visualization version GIF version |
Description: A group operation is a left group action of the group on itself. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
gaid2.1 | ⊢ 𝑋 = (Base‘𝐺) |
gaid2.2 | ⊢ + = (+g‘𝐺) |
gaid2.3 | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) |
Ref | Expression |
---|---|
gaid2 | ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpAct 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gaid2.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
2 | 1 | subgid 19170 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑋 ∈ (SubGrp‘𝐺)) |
3 | gaid2.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | eqid 2740 | . . . 4 ⊢ (𝐺 ↾s 𝑋) = (𝐺 ↾s 𝑋) | |
5 | gaid2.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) | |
6 | 1, 3, 4, 5 | subgga 19342 | . . 3 ⊢ (𝑋 ∈ (SubGrp‘𝐺) → 𝐹 ∈ ((𝐺 ↾s 𝑋) GrpAct 𝑋)) |
7 | 2, 6 | syl 17 | . 2 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ ((𝐺 ↾s 𝑋) GrpAct 𝑋)) |
8 | 1 | ressid 17305 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝑋) = 𝐺) |
9 | 8 | oveq1d 7465 | . 2 ⊢ (𝐺 ∈ Grp → ((𝐺 ↾s 𝑋) GrpAct 𝑋) = (𝐺 GrpAct 𝑋)) |
10 | 7, 9 | eleqtrd 2846 | 1 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpAct 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 Basecbs 17260 ↾s cress 17289 +gcplusg 17313 Grpcgrp 18975 SubGrpcsubg 19162 GrpAct cga 19331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-0g 17503 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-grp 18978 df-subg 19165 df-ga 19332 |
This theorem is referenced by: cayleylem1 19456 |
Copyright terms: Public domain | W3C validator |