![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsgid | Structured version Visualization version GIF version |
Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
nsgid.z | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
nsgid | ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsgid.z | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | subgid 19159 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
3 | simp1 1135 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝐺 ∈ Grp) | |
4 | eqid 2735 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | 1, 4 | grpcl 18972 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
6 | simp2 1136 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
7 | eqid 2735 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
8 | 1, 7 | grpsubcl 19051 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥(+g‘𝐺)𝑦) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
9 | 3, 5, 6, 8 | syl3anc 1370 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
10 | 9 | 3expb 1119 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
11 | 10 | ralrimivva 3200 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
12 | 1, 4, 7 | isnsg3 19191 | . 2 ⊢ (𝐵 ∈ (NrmSGrp‘𝐺) ↔ (𝐵 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵)) |
13 | 2, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Grpcgrp 18964 -gcsg 18966 SubGrpcsubg 19151 NrmSGrpcnsg 19152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-ress 17275 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-nsg 19155 |
This theorem is referenced by: 0idnsgd 19202 trivnsgd 19203 1nsgtrivd 19205 2nsgsimpgd 20137 |
Copyright terms: Public domain | W3C validator |