| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsgid | Structured version Visualization version GIF version | ||
| Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| nsgid.z | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| nsgid | ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgid.z | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | subgid 19036 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| 3 | simp1 1136 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝐺 ∈ Grp) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | 1, 4 | grpcl 18849 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 6 | simp2 1137 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 8 | 1, 7 | grpsubcl 18928 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥(+g‘𝐺)𝑦) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
| 9 | 3, 5, 6, 8 | syl3anc 1373 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
| 10 | 9 | 3expb 1120 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
| 11 | 10 | ralrimivva 3175 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵) |
| 12 | 1, 4, 7 | isnsg3 19067 | . 2 ⊢ (𝐵 ∈ (NrmSGrp‘𝐺) ↔ (𝐵 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝐵)) |
| 13 | 2, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 Grpcgrp 18841 -gcsg 18843 SubGrpcsubg 19028 NrmSGrpcnsg 19029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-ress 17137 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-nsg 19032 |
| This theorem is referenced by: 0idnsgd 19078 trivnsgd 19079 1nsgtrivd 19081 2nsgsimpgd 20011 |
| Copyright terms: Public domain | W3C validator |