| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablfac | Structured version Visualization version GIF version | ||
| Description: The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| Ref | Expression |
|---|---|
| ablfac.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablfac.c | ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} |
| ablfac.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablfac.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| Ref | Expression |
|---|---|
| ablfac | ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablfac.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablgrp 19715 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 3 | ablfac.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | subgid 19060 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| 5 | ablfac.c | . . . . 5 ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} | |
| 6 | ablfac.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 8 | eqid 2729 | . . . . 5 ⊢ {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} | |
| 9 | eqid 2729 | . . . . 5 ⊢ (𝑝 ∈ {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ↦ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) = (𝑝 ∈ {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ↦ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) | |
| 11 | 3, 5, 1, 6, 7, 8, 9, 10 | ablfaclem1 20017 | . . . 4 ⊢ (𝐵 ∈ (SubGrp‘𝐺) → ((𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})‘𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)}) |
| 12 | 1, 2, 4, 11 | 4syl 19 | . . 3 ⊢ (𝜑 → ((𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})‘𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)}) |
| 13 | 3, 5, 1, 6, 7, 8, 9, 10 | ablfaclem3 20019 | . . 3 ⊢ (𝜑 → ((𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})‘𝐵) ≠ ∅) |
| 14 | 12, 13 | eqnetrrd 2993 | . 2 ⊢ (𝜑 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅) |
| 15 | rabn0 4352 | . 2 ⊢ ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) | |
| 16 | 14, 15 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 ∩ cin 3913 ∅c0 4296 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ↑cexp 14026 ♯chash 14295 Word cword 14478 ∥ cdvds 16222 ℙcprime 16641 pCnt cpc 16807 Basecbs 17179 ↾s cress 17200 Grpcgrp 18865 SubGrpcsubg 19052 odcod 19454 pGrp cpgp 19456 Abelcabl 19711 CycGrpccyg 19807 DProd cdprd 19925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-rpss 7699 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-dvds 16223 df-gcd 16465 df-prm 16642 df-pc 16808 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-eqg 19057 df-ghm 19145 df-gim 19191 df-ga 19222 df-cntz 19249 df-oppg 19278 df-od 19458 df-gex 19459 df-pgp 19460 df-lsm 19566 df-pj1 19567 df-cmn 19712 df-abl 19713 df-cyg 19808 df-dprd 19927 |
| This theorem is referenced by: ablfac2 20021 |
| Copyright terms: Public domain | W3C validator |