| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablfac | Structured version Visualization version GIF version | ||
| Description: The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| Ref | Expression |
|---|---|
| ablfac.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablfac.c | ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} |
| ablfac.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablfac.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| Ref | Expression |
|---|---|
| ablfac | ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablfac.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablgrp 19664 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 3 | ablfac.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | subgid 19007 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| 5 | ablfac.c | . . . . 5 ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} | |
| 6 | ablfac.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 8 | eqid 2729 | . . . . 5 ⊢ {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} | |
| 9 | eqid 2729 | . . . . 5 ⊢ (𝑝 ∈ {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ↦ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) = (𝑝 ∈ {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ↦ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) | |
| 11 | 3, 5, 1, 6, 7, 8, 9, 10 | ablfaclem1 19966 | . . . 4 ⊢ (𝐵 ∈ (SubGrp‘𝐺) → ((𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})‘𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)}) |
| 12 | 1, 2, 4, 11 | 4syl 19 | . . 3 ⊢ (𝜑 → ((𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})‘𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)}) |
| 13 | 3, 5, 1, 6, 7, 8, 9, 10 | ablfaclem3 19968 | . . 3 ⊢ (𝜑 → ((𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})‘𝐵) ≠ ∅) |
| 14 | 12, 13 | eqnetrrd 2993 | . 2 ⊢ (𝜑 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅) |
| 15 | rabn0 4340 | . 2 ⊢ ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) | |
| 16 | 14, 15 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3394 ∩ cin 3902 ∅c0 4284 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ran crn 5620 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 ↑cexp 13968 ♯chash 14237 Word cword 14420 ∥ cdvds 16163 ℙcprime 16582 pCnt cpc 16748 Basecbs 17120 ↾s cress 17141 Grpcgrp 18812 SubGrpcsubg 18999 odcod 19403 pGrp cpgp 19405 Abelcabl 19660 CycGrpccyg 19756 DProd cdprd 19874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-rpss 7659 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-dvds 16164 df-gcd 16406 df-prm 16583 df-pc 16749 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-eqg 19004 df-ghm 19092 df-gim 19138 df-ga 19169 df-cntz 19196 df-oppg 19225 df-od 19407 df-gex 19408 df-pgp 19409 df-lsm 19515 df-pj1 19516 df-cmn 19661 df-abl 19662 df-cyg 19757 df-dprd 19876 |
| This theorem is referenced by: ablfac2 19970 |
| Copyright terms: Public domain | W3C validator |