Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2fn Structured version   Visualization version   GIF version

Theorem swapf2fn 49230
Description: The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapf2fvala.s 𝑆 = (𝐶 ×c 𝐷)
swapf2fvala.b 𝐵 = (Base‘𝑆)
swapf1val.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapf2fn (𝜑𝑃 Fn (𝐵 × 𝐵))

Proof of Theorem swapf2fn
Dummy variables 𝑢 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓}))
2 ovex 7402 . . . 4 (𝑢(Hom ‘𝑆)𝑣) ∈ V
32mptex 7179 . . 3 (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓}) ∈ V
41, 3fnmpoi 8028 . 2 (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) Fn (𝐵 × 𝐵)
5 swapfval.c . . . 4 (𝜑𝐶𝑈)
6 swapfval.d . . . 4 (𝜑𝐷𝑉)
7 swapf2fvala.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
8 swapf2fvala.b . . . 4 𝐵 = (Base‘𝑆)
9 eqidd 2730 . . . 4 (𝜑 → (Hom ‘𝑆) = (Hom ‘𝑆))
10 swapf1val.o . . . 4 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
115, 6, 7, 8, 9, 10swapf2fval 49227 . . 3 (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})))
1211fneq1d 6593 . 2 (𝜑 → (𝑃 Fn (𝐵 × 𝐵) ↔ (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) Fn (𝐵 × 𝐵)))
134, 12mpbiri 258 1 (𝜑𝑃 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4585  cop 4591   cuni 4867  cmpt 5183   × cxp 5629  ccnv 5630   Fn wfn 6494  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Hom chom 17207   ×c cxpc 18105   swapF cswapf 49221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-swapf 49222
This theorem is referenced by:  swapffunc  49244
  Copyright terms: Public domain W3C validator