| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2fn | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| swapfval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| swapf2fvala.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf2fvala.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf1val.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| Ref | Expression |
|---|---|
| swapf2fn | ⊢ (𝜑 → 𝑃 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) | |
| 2 | ovex 7374 | . . . 4 ⊢ (𝑢(Hom ‘𝑆)𝑣) ∈ V | |
| 3 | 2 | mptex 7152 | . . 3 ⊢ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓}) ∈ V |
| 4 | 1, 3 | fnmpoi 7997 | . 2 ⊢ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) Fn (𝐵 × 𝐵) |
| 5 | swapfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 6 | swapfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 7 | swapf2fvala.s | . . . 4 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 8 | swapf2fvala.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 9 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (Hom ‘𝑆) = (Hom ‘𝑆)) | |
| 10 | swapf1val.o | . . . 4 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 11 | 5, 6, 7, 8, 9, 10 | swapf2fval 49297 | . . 3 ⊢ (𝜑 → 𝑃 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓}))) |
| 12 | 11 | fneq1d 6569 | . 2 ⊢ (𝜑 → (𝑃 Fn (𝐵 × 𝐵) ↔ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) Fn (𝐵 × 𝐵))) |
| 13 | 4, 12 | mpbiri 258 | 1 ⊢ (𝜑 → 𝑃 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4571 〈cop 4577 ∪ cuni 4854 ↦ cmpt 5167 × cxp 5609 ◡ccnv 5610 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 Basecbs 17115 Hom chom 17167 ×c cxpc 18069 swapF cswapf 49291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-swapf 49292 |
| This theorem is referenced by: swapffunc 49314 |
| Copyright terms: Public domain | W3C validator |