| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2fn | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| swapfval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| swapf2fvala.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf2fvala.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf1val.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| Ref | Expression |
|---|---|
| swapf2fn | ⊢ (𝜑 → 𝑃 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) | |
| 2 | ovex 7422 | . . . 4 ⊢ (𝑢(Hom ‘𝑆)𝑣) ∈ V | |
| 3 | 2 | mptex 7199 | . . 3 ⊢ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓}) ∈ V |
| 4 | 1, 3 | fnmpoi 8051 | . 2 ⊢ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) Fn (𝐵 × 𝐵) |
| 5 | swapfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 6 | swapfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 7 | swapf2fvala.s | . . . 4 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 8 | swapf2fvala.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 9 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (Hom ‘𝑆) = (Hom ‘𝑆)) | |
| 10 | swapf1val.o | . . . 4 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 11 | 5, 6, 7, 8, 9, 10 | swapf2fval 49236 | . . 3 ⊢ (𝜑 → 𝑃 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓}))) |
| 12 | 11 | fneq1d 6613 | . 2 ⊢ (𝜑 → (𝑃 Fn (𝐵 × 𝐵) ↔ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) Fn (𝐵 × 𝐵))) |
| 13 | 4, 12 | mpbiri 258 | 1 ⊢ (𝜑 → 𝑃 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4591 〈cop 4597 ∪ cuni 4873 ↦ cmpt 5190 × cxp 5638 ◡ccnv 5639 Fn wfn 6508 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 Basecbs 17185 Hom chom 17237 ×c cxpc 18135 swapF cswapf 49230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-swapf 49231 |
| This theorem is referenced by: swapffunc 49253 |
| Copyright terms: Public domain | W3C validator |