| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2fn | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| swapfval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| swapf2fvala.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf2fvala.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf1val.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
| Ref | Expression |
|---|---|
| swapf2fn | ⊢ (𝜑 → 𝑃 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) | |
| 2 | ovex 7432 | . . . 4 ⊢ (𝑢(Hom ‘𝑆)𝑣) ∈ V | |
| 3 | 2 | mptex 7211 | . . 3 ⊢ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓}) ∈ V |
| 4 | 1, 3 | fnmpoi 8063 | . 2 ⊢ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) Fn (𝐵 × 𝐵) |
| 5 | swapfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 6 | swapfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 7 | swapf2fvala.s | . . . 4 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 8 | swapf2fvala.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 9 | eqidd 2735 | . . . 4 ⊢ (𝜑 → (Hom ‘𝑆) = (Hom ‘𝑆)) | |
| 10 | swapf1val.o | . . . 4 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
| 11 | 5, 6, 7, 8, 9, 10 | swapf2fval 48988 | . . 3 ⊢ (𝜑 → 𝑃 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓}))) |
| 12 | 11 | fneq1d 6627 | . 2 ⊢ (𝜑 → (𝑃 Fn (𝐵 × 𝐵) ↔ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) Fn (𝐵 × 𝐵))) |
| 13 | 4, 12 | mpbiri 258 | 1 ⊢ (𝜑 → 𝑃 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4599 〈cop 4605 ∪ cuni 4880 ↦ cmpt 5198 × cxp 5649 ◡ccnv 5650 Fn wfn 6522 ‘cfv 6527 (class class class)co 7399 ∈ cmpo 7401 Basecbs 17213 Hom chom 17267 ×c cxpc 18165 swapFcswapf 48982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-swapf 48983 |
| This theorem is referenced by: swapffunc 49005 |
| Copyright terms: Public domain | W3C validator |