Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2fn Structured version   Visualization version   GIF version

Theorem swapf2fn 49429
Description: The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapf2fvala.s 𝑆 = (𝐶 ×c 𝐷)
swapf2fvala.b 𝐵 = (Base‘𝑆)
swapf1val.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapf2fn (𝜑𝑃 Fn (𝐵 × 𝐵))

Proof of Theorem swapf2fn
Dummy variables 𝑢 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓}))
2 ovex 7388 . . . 4 (𝑢(Hom ‘𝑆)𝑣) ∈ V
32mptex 7166 . . 3 (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓}) ∈ V
41, 3fnmpoi 8011 . 2 (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) Fn (𝐵 × 𝐵)
5 swapfval.c . . . 4 (𝜑𝐶𝑈)
6 swapfval.d . . . 4 (𝜑𝐷𝑉)
7 swapf2fvala.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
8 swapf2fvala.b . . . 4 𝐵 = (Base‘𝑆)
9 eqidd 2734 . . . 4 (𝜑 → (Hom ‘𝑆) = (Hom ‘𝑆))
10 swapf1val.o . . . 4 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
115, 6, 7, 8, 9, 10swapf2fval 49426 . . 3 (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})))
1211fneq1d 6582 . 2 (𝜑 → (𝑃 Fn (𝐵 × 𝐵) ↔ (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) Fn (𝐵 × 𝐵)))
134, 12mpbiri 258 1 (𝜑𝑃 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4577  cop 4583   cuni 4860  cmpt 5176   × cxp 5619  ccnv 5620   Fn wfn 6484  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17127  Hom chom 17179   ×c cxpc 18082   swapF cswapf 49420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-swapf 49421
This theorem is referenced by:  swapffunc  49443
  Copyright terms: Public domain W3C validator