Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2fn Structured version   Visualization version   GIF version

Theorem swapf2fn 48947
Description: The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapf2fvala.s 𝑆 = (𝐶 ×c 𝐷)
swapf2fvala.b 𝐵 = (Base‘𝑆)
swapf1val.o (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapf2fn (𝜑𝑃 Fn (𝐵 × 𝐵))

Proof of Theorem swapf2fn
Dummy variables 𝑢 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓}))
2 ovex 7462 . . . 4 (𝑢(Hom ‘𝑆)𝑣) ∈ V
32mptex 7241 . . 3 (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓}) ∈ V
41, 3fnmpoi 8091 . 2 (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) Fn (𝐵 × 𝐵)
5 swapfval.c . . . 4 (𝜑𝐶𝑈)
6 swapfval.d . . . 4 (𝜑𝐷𝑉)
7 swapf2fvala.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
8 swapf2fvala.b . . . 4 𝐵 = (Base‘𝑆)
9 eqidd 2737 . . . 4 (𝜑 → (Hom ‘𝑆) = (Hom ‘𝑆))
10 swapf1val.o . . . 4 (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
115, 6, 7, 8, 9, 10swapf2fval 48944 . . 3 (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})))
1211fneq1d 6659 . 2 (𝜑 → (𝑃 Fn (𝐵 × 𝐵) ↔ (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) Fn (𝐵 × 𝐵)))
134, 12mpbiri 258 1 (𝜑𝑃 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4624  cop 4630   cuni 4905  cmpt 5223   × cxp 5681  ccnv 5682   Fn wfn 6554  cfv 6559  (class class class)co 7429  cmpo 7431  Basecbs 17243  Hom chom 17304   ×c cxpc 18209  swapFcswapf 48938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-ov 7432  df-oprab 7433  df-mpo 7434  df-1st 8010  df-2nd 8011  df-swapf 48939
This theorem is referenced by:  swapffunc  48961
  Copyright terms: Public domain W3C validator