Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf1val Structured version   Visualization version   GIF version

Theorem swapf1val 48990
Description: The object part of the swap functor. See also swapf1vala 48989. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapf2fvala.s 𝑆 = (𝐶 ×c 𝐷)
swapf2fvala.b 𝐵 = (Base‘𝑆)
swapf1val.o (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapf1val (𝜑𝑂 = (𝑥𝐵 {𝑥}))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝑂(𝑥)   𝑉(𝑥)

Proof of Theorem swapf1val
StepHypRef Expression
1 swapf1val.o . . 3 (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
21fveq2d 6876 . 2 (𝜑 → (1st ‘(𝐶swapF𝐷)) = (1st ‘⟨𝑂, 𝑃⟩))
3 swapfval.c . . 3 (𝜑𝐶𝑈)
4 swapfval.d . . 3 (𝜑𝐷𝑉)
5 swapf2fvala.s . . 3 𝑆 = (𝐶 ×c 𝐷)
6 swapf2fvala.b . . 3 𝐵 = (Base‘𝑆)
73, 4, 5, 6swapf1vala 48989 . 2 (𝜑 → (1st ‘(𝐶swapF𝐷)) = (𝑥𝐵 {𝑥}))
83, 4swapfelvv 48986 . . . 4 (𝜑 → (𝐶swapF𝐷) ∈ (V × V))
91, 8eqeltrrd 2834 . . 3 (𝜑 → ⟨𝑂, 𝑃⟩ ∈ (V × V))
10 opelxp 5687 . . . 4 (⟨𝑂, 𝑃⟩ ∈ (V × V) ↔ (𝑂 ∈ V ∧ 𝑃 ∈ V))
1110biimpi 216 . . 3 (⟨𝑂, 𝑃⟩ ∈ (V × V) → (𝑂 ∈ V ∧ 𝑃 ∈ V))
12 op1stg 7994 . . 3 ((𝑂 ∈ V ∧ 𝑃 ∈ V) → (1st ‘⟨𝑂, 𝑃⟩) = 𝑂)
139, 11, 123syl 18 . 2 (𝜑 → (1st ‘⟨𝑂, 𝑃⟩) = 𝑂)
142, 7, 133eqtr3rd 2778 1 (𝜑𝑂 = (𝑥𝐵 {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  {csn 4599  cop 4605   cuni 4880  cmpt 5198   × cxp 5649  ccnv 5650  cfv 6527  (class class class)co 7399  1st c1st 7980  Basecbs 17213   ×c cxpc 18165  swapFcswapf 48982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-swapf 48983
This theorem is referenced by:  swapf1a  48992  swapf1  48995  swapf1f1o  48998
  Copyright terms: Public domain W3C validator