| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf1val | Structured version Visualization version GIF version | ||
| Description: The object part of the swap functor. See also swapf1vala 48989. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| swapfval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| swapf2fvala.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf2fvala.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf1val.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
| Ref | Expression |
|---|---|
| swapf1val | ⊢ (𝜑 → 𝑂 = (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapf1val.o | . . 3 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
| 2 | 1 | fveq2d 6876 | . 2 ⊢ (𝜑 → (1st ‘(𝐶swapF𝐷)) = (1st ‘〈𝑂, 𝑃〉)) |
| 3 | swapfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 4 | swapfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 5 | swapf2fvala.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 6 | swapf2fvala.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 7 | 3, 4, 5, 6 | swapf1vala 48989 | . 2 ⊢ (𝜑 → (1st ‘(𝐶swapF𝐷)) = (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥})) |
| 8 | 3, 4 | swapfelvv 48986 | . . . 4 ⊢ (𝜑 → (𝐶swapF𝐷) ∈ (V × V)) |
| 9 | 1, 8 | eqeltrrd 2834 | . . 3 ⊢ (𝜑 → 〈𝑂, 𝑃〉 ∈ (V × V)) |
| 10 | opelxp 5687 | . . . 4 ⊢ (〈𝑂, 𝑃〉 ∈ (V × V) ↔ (𝑂 ∈ V ∧ 𝑃 ∈ V)) | |
| 11 | 10 | biimpi 216 | . . 3 ⊢ (〈𝑂, 𝑃〉 ∈ (V × V) → (𝑂 ∈ V ∧ 𝑃 ∈ V)) |
| 12 | op1stg 7994 | . . 3 ⊢ ((𝑂 ∈ V ∧ 𝑃 ∈ V) → (1st ‘〈𝑂, 𝑃〉) = 𝑂) | |
| 13 | 9, 11, 12 | 3syl 18 | . 2 ⊢ (𝜑 → (1st ‘〈𝑂, 𝑃〉) = 𝑂) |
| 14 | 2, 7, 13 | 3eqtr3rd 2778 | 1 ⊢ (𝜑 → 𝑂 = (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 {csn 4599 〈cop 4605 ∪ cuni 4880 ↦ cmpt 5198 × cxp 5649 ◡ccnv 5650 ‘cfv 6527 (class class class)co 7399 1st c1st 7980 Basecbs 17213 ×c cxpc 18165 swapFcswapf 48982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-swapf 48983 |
| This theorem is referenced by: swapf1a 48992 swapf1 48995 swapf1f1o 48998 |
| Copyright terms: Public domain | W3C validator |