Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf1val Structured version   Visualization version   GIF version

Theorem swapf1val 49299
Description: The object part of the swap functor. See also swapf1vala 49298. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapf2fvala.s 𝑆 = (𝐶 ×c 𝐷)
swapf2fvala.b 𝐵 = (Base‘𝑆)
swapf1val.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapf1val (𝜑𝑂 = (𝑥𝐵 {𝑥}))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝑂(𝑥)   𝑉(𝑥)

Proof of Theorem swapf1val
StepHypRef Expression
1 swapf1val.o . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
21fveq2d 6821 . 2 (𝜑 → (1st ‘(𝐶 swapF 𝐷)) = (1st ‘⟨𝑂, 𝑃⟩))
3 swapfval.c . . 3 (𝜑𝐶𝑈)
4 swapfval.d . . 3 (𝜑𝐷𝑉)
5 swapf2fvala.s . . 3 𝑆 = (𝐶 ×c 𝐷)
6 swapf2fvala.b . . 3 𝐵 = (Base‘𝑆)
73, 4, 5, 6swapf1vala 49298 . 2 (𝜑 → (1st ‘(𝐶 swapF 𝐷)) = (𝑥𝐵 {𝑥}))
83, 4swapfelvv 49295 . . . 4 (𝜑 → (𝐶 swapF 𝐷) ∈ (V × V))
91, 8eqeltrrd 2832 . . 3 (𝜑 → ⟨𝑂, 𝑃⟩ ∈ (V × V))
10 opelxp 5647 . . . 4 (⟨𝑂, 𝑃⟩ ∈ (V × V) ↔ (𝑂 ∈ V ∧ 𝑃 ∈ V))
1110biimpi 216 . . 3 (⟨𝑂, 𝑃⟩ ∈ (V × V) → (𝑂 ∈ V ∧ 𝑃 ∈ V))
12 op1stg 7928 . . 3 ((𝑂 ∈ V ∧ 𝑃 ∈ V) → (1st ‘⟨𝑂, 𝑃⟩) = 𝑂)
139, 11, 123syl 18 . 2 (𝜑 → (1st ‘⟨𝑂, 𝑃⟩) = 𝑂)
142, 7, 133eqtr3rd 2775 1 (𝜑𝑂 = (𝑥𝐵 {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571  cop 4577   cuni 4854  cmpt 5167   × cxp 5609  ccnv 5610  cfv 6476  (class class class)co 7341  1st c1st 7914  Basecbs 17115   ×c cxpc 18069   swapF cswapf 49291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-swapf 49292
This theorem is referenced by:  swapf1a  49301  swapf1  49304  swapf1f1o  49307
  Copyright terms: Public domain W3C validator